[1] Novikov S P, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons:the Inverse Scattering Method. New York:Consultants Bureau, 1984 [2] Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge:Cambridge University Press, 1991 [3] Xiao Y, Fan E G. A Riemann-Hilbert approach to the Harry-Dym equation on the line. Chin Ann Math Ser B, 2016, 37(3):373-384 [4] Geng X G, Wu J P. Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation. Wave Motion, 2016, 60:62-72 [5] Wang D S, Zhang D J, Yang J. Integrable properties of the general coupled nonlinear Schrödinger equations. J Math Phys, 2010, 51(2):023510 [6] Tu G Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J Phys A:Math Gen, 1989, 22(13):2375-2392 [7] Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm Pure Appl Math, 1968, 21(5):467-490 [8] Magri F. A simple model of the integrable Hamiltonian equation. J Math Phys, 1978, 19(5):1156-1162 [9] Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons Fractals, 1996, 7(8):1227-1250 [10] Ma W X, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J Phys A:Math Gen, 2006, 39(34):10787-10801 [11] Ma W X. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Anal, 2009, 71(12):e1716-e1726 [12] Ma W X, Zhou R G. Adjoint symmetry constraints leading to binary nonlinearization. J Nonlinear Math Phys, 2002, 9(Suppl 1):106-126 [13] Drinfeld V G, Sokolov V V. Equations of Korteweg-de Vries type, and simple Lie algebras. Soviet Math Dokl, 1982, 23(3):457-462 [14] Ma W X, Xu X X, Zhang Y F. Semi-direct sums of Lie algebras and continuous integrable couplings. Phys Lett A, 2006, 351(3):125-130 [15] Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53(4):249-315 [16] Manakov S V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov Phys JETP, 1972, 38(2):248-253 [17] Chen S T, Zhou R G. An integrable decomposition of the Manakov equation. Comput Appl Math, 2012, 31(1):1-18 [18] Ma W X. Symmetry constraint of MKdV equations by binary nonlinearization. Phys A, 1995, 219(3/4):467-481 [19] Yu J, Zhou R G. Two kinds of new integrable decompositions of the mKdV equation. Phys Lett A, 2006, 349(6):452-461 [20] Gerdjikov V S. Basic aspects of soliton theory//Mladenov I M, Hirshfeld A C, eds. Proceedings of the 6th International Conference on Geometry, Integrability and Quantization (Varna, June 3-10, 2004), Sofia:Softex, 2005:78-125 [21] Doktorov E V, Leble S B. A Dressing Method in Mathematical Physics, Mathematical Physics Studies 28. Dordrecht:Springer, 2007 [22] Ma W X, Yong X L, Qin Z Y, Gu X, Zhou Y. A generalized Liouville's formula. preprint, 2016 [23] Shchesnovich V S. Perturbation theory for nearly integrable multicomponent nonlinear PDEs. J Math Phys, 2002, 43(3):1460-1486 [24] Shchesnovich V S, Yang J. General soliton matrices in the Riemann-Hilbert problem for integrable nonlinear equations. J Math Phys, 2003, 44(10):4604-4639 [25] Kawata T. Riemann spectral method for the nonlinear evolution equation//Advances in Nonlinear Waves Vol I, Res Notes in Math 95. Boston, MA:Pitman, 1984:210-225 [26] Fokas A S, Lenells J. The unified method:I. Nonlinearizable problems on the half-line. J Phys A:Math Theor, 2012, 45(19):195201 [27] Hirota R. The Direct Method in Soliton Theory. New York:Cambridge University Press, 2004 [28] Ma W X. Generalized bilinear differential equations. Stud Nonlinear Sci, 2011, 2(4):140-144 [29] Freeman N C, Nimmo J J C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations:the Wronskian technique. Phys Lett A, 1983, 95(1):1-3 [30] Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form:Wronskian solutions. Trans Amer Math Soc, 2015, 357(5):1753-1778 [31] Matveev V B, Salle M A. Darboux Transformations and Solitons. Berlin:Springer, 1991 [32] Xu X X. An integrable coupling hierarchy of the MKdV-integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl Math Comput, 2010, 216(1):344-353 [33] Wang X R, Zhang X E, Zhao P Y. Binary nonlinearization for AKNS-KN coupling system. Abstr Appl Anal, 2014, 2014:Article ID 253102 [34] Dong H H, Zhao K, Yang H W, Li Y Q. Generalised (2+1)-dimensional super MKdV hierarchy for integrable systems in soliton theory. East Asian J Appl Math, 2015, 5(3):256-272 [35] Dong H H, Guo B Y, Yin B S. Generalized fractional supertrace identity for Hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources. Anal Math Phys, 2016, 6(2):199-209 [36] Matveev V B. Generalized Wronskian formula for solutions of the KdV equations:first applications. Phys Lett A, 1992, 166(3/4):205-208 [37] Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301(12):35-44 [38] Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20(7):1496-1503 [39] Ma W X, Zhou Y, Dougherty R. Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int J Modern Phys B, 2016, 30(28/29):1640018 [40] Zhang Y, Dong H H, Zhang X E, Yang H W. Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation. Comput Math Appl, 2017, 73(2):246-252 [41] Zhang Y, Sun S L, Dong H H. Hybrid solutions of (3+1)-dimensional Jimbo-Miwa equation. Math Probl Eng, 2017, 2017:Article ID 5453941 [42] Ma W X, Zhou Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264(4):2633-2659 [43] Li X Y, Zhao Q L, Li Y X, Dong H H. Binary Bargmann symmetry constraint associated with 3×3 discrete matrix spectral problem. J Nonlinear Sci Appl, 2015, 8(5):496-506 [44] Zhao Q L, Li X Y. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal Math Phys, 2016, 6(3):237-254 [45] Dong H H, Zhang Y, Zhang X E. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun Nonlinear Sci Numer Simulat, 2016, 36:354-365 [46] Li X Y, Zhao Q L. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J Geom Phys, 2017, 121:123-137 [47] Belokolos E D, Bobenko A I, Enol'skii V Z, Its A R, Matveev V B. Algebro-geometric approach to nonlinear integrable equations. Berlin:Springer, 1994 [48] Gesztesy F, Holden H. Soliton Equations and Their Algebro-Geometric Solutions:(1+1)-Dimensional Continuous Models. Cambridge:Cambridge University Press, 2003 |