[1] Abate M, Patrizio G. Finsler metrics-A global approach with applications to geometric function theory//Lecture Notes in Mathematics. Volume 1591. Berlin Aeidelberg:Springer-Verlag, 1994 [2] Abate M, Patrizio G. Holomorphic curvature of complex Finsler metrics and complex geodesics. J Geom Anal, 1996, 6(3):341-363 [3] Aldea N, Munteanu G. On complex Finsler spaces with Randers metrics. J Korean Math Soc, 2009, 46(5):949-966 [4] Aldea N, Munteanu G. On the class of complex Douglas-Kropina spaces. Bull Korean Math Soc, 2018, 55(1):251-266 [5] Aldea N, Kopacz P. Generalized Zermelo navigation on Hermitian manifolds under mild wind. Differ Geom Appl, 2017, 54:325-343 [6] Chen B, Shen Y. On complex Randers metrics. Int J Math, 2010, 21(8):971-986 [7] Chen X, Yan R. Wu's theorem for Kähler-Finsler spaces. Adv Math, 2015, 275:184-194 [8] He Y, Zhong C. Strongly convex weakly complex Berwald metrics and real Landsberg metrics. Sci China Math, 2018, 61(3):535-544 [9] Lempert L. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull Soc Math Fr, 1981, 109(4):427-474 [10] Lempert L. Holomorphic retracts and intrinsic metrics in convex domains. Anal Math, 1982, 8(4):257-261 [11] Mo X, Zhu H. Some results on strong Randers metrics. Period Math Hung, 2015, 71(1):24-34 [12] Patrizio G. On the convexity of the Kobayashi indicatrix. Deformations of mathematical structures. Lódź/Lublin, 1985/87:171-176; Dordrecht:Kluwer Academic Publisher, 1989 [13] Wang K, Xia H, Zhong C. On U(n)-invariant strongly convex complex Finsler metrics. Sci China Math, 2020. https://doi.org/10.1007/s11425-019-1695-6 [14] Xia H, Wei Q. On product complex Finsler manifolds. Turk J Math, 2019, 43(1):422-438 [15] Xia H, Zhong C. A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature. Differ Geom Appl, 2015, 43:1-20 [16] Xia H, Zhong C. On unitary invariant weakly complex Berwald metrics with vanishing holomorphic curvature and closed geodesics. Chin Ann Math Ser B, 2016, 37(2):161-174 [17] Xia H, Zhong C. On a class of smooth complex Finsler metrics. Results Math, 2017, 71:657-686 [18] Xia H, Zhong C. On strongly convex weakly Kähler-Finsler metrics of constant flag curvture. J Math Anal Appl, 2016, 443(2):891-912 [19] Xia H, Zhong C. On complex Berwald metrics which are not conformal changes of complex Minkowski metrics. Adv Geom, 2018, 18(3):373-384 [20] Xia H, Zhong C. On strongly convex projectively flat and dually flat complex Finsler metrics. J Geom, 2018, 109(3):39 [21] Yin S, Zhang X. Comparison theorems and their applications on Kähler Finsler manifolds. J Geom Anal, 2020, 30(2):2105-2131 [22] Zhong C. On unitary invariant strongly pseudoconvex complex Finsler metrics. Differ Geom Appl, 2015, 40:159-186 [23] Zhong C. On real and complex Berwald connections associated to strongly convex weakly Kähler-Finsler metrics. Differ Geom Appl, 2011, 29(3):388-408 |