[1] Curró C, Fusco D, Manganaro N. An exact description of nonlinear wave interaction processes ruled by 2×2 hyperbolic systems. Zeitschrift für angewandte Mathematik und Physik, 2013, 64(4):1227-1248 [2] Curró C, Fusco D, Manganaro N. Hodograph transformation and differential constraints for wave solutions to 2×2 quasilinear hyperbolic nonhomogeneous systems. Journal of Physics A:Mathematical and Theoretical, 2012, 45(19):195207 [3] Curró C, Fusco D, Manganaro N. A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines. Journal of Physics A:Mathematical and Theoretical, 2011, 44(33):335205. [4] Minhajul, Zeidan D, Raja Sekhar T. On the wave interactions in the drift-flux equations of two-phase flows. Applied Mathematics and Computation, 2018, 327:117-131 [5] Kuila S, Raja Sekhar T. Interaction of weak shocks in drift-flux model of compressible two-phase flows. Chaos, Solitons & Fractals, 2018, 107:222-227 [6] Minhajul, Raja Sekhar T. Interaction of elementary waves with a weak discontinuity in an isothermal drift-flux model of compressible two-phase flows. Quarterly of Applied Mathematics, 2019, 77:671-688 [7] Sun M. A note on the interactions of elementary waves for the AR traffic flow model without vacuum. Acta Mathematica Scientia, 2011, 31B(4):1503-1512 [8] Shen C, Sun M. Wave interactions and stability of the Riemann solutions for a scalar conservation law with a discontinuous flux function. Zeitschrift fr angewandte Mathematik und Physik (ZAMP), 2013, 64(4):1025-1056 [9] Sen A, Raja Sekhar T, Sharma V D. Wave interactions and stability of the Riemann solution for a strictly hyperbolic system of conservation laws. Quarterly of Applied Mathematics, 2017, 75(3):539-554 [10] Jeffrey A, Kawahara T. Asymptotic methods in nonlinear wave theory. Applicable Mathematics Series, Boston:Pitman Publishing, 1982 [11] Jeffrey A. Quasilinear hyperbolic systems and waves. London-San Francisco, Calif.-Melbourne, Pitman Publishing, Ltd.(Research Notes in Mathematics, No 5) 230 pp, 1976 [12] Whitham G B. Linear and nonlinear waves. Volume 42. John Wiley & Sons, 2011 [13] Raja Sekhar T, Minhajul. Elementary wave interactions in blood flow through artery. Journal of Mathematical Physics, 2017, 58(10):101502 [14] Raja Sekhar T, Sharma V D. Interaction of shallow water waves. Studies Appl Math, 2008, 121(1):1-25 [15] Courant R, Friedrichs K O. Supersonic flow and shock waves. Volume 21. Springer Science & Business Media, 1999 [16] Seymour B R, Varley E. Exact solutions describing soliton-like interactions in a nondispersive medium. SIAM Journal on Applied Mathematics, 1982, 42(4):804-821 [17] Currò C, Fusco D. On a class of quasilinear hyperbolic reducible systems allowing for special wave interactions. Zeitschrift für angewandte Mathematik und Physik, 1987, 38(4):580-594 [18] Lax P D. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. Journal of Mathematical Physics, 1964, 5(5):611-613 [19] Li T T. Global classical solutions for quasilinear hyperbolic systems. John Wiley & Sons, 1994 [20] Coste L F, Gottlich S, Herty M. Data-fitted second-order macroscopic production models. SIAM Journal on Applied Mathematics, 2015, 75(3):999-1014 [21] Subhankar Sil, Raja Sekhar T. Nonlocally related systems, nonlocal symmetry reductions and exact solutions for one-dimensional macroscopic production model. The European Physical Journal Plus, 2020, 135(6):514 [22] Sun M. Singular solutions to the Riemann problem for a macroscopic production model. Zeitschrift für Angewandte Mathematik und Mechanik, 2017, 97(8):916-931 [23] Manganaro N, Meleshko S. Reduction procedure and generalized simple waves for systems written in Riemann variables. Nonlinear Dynamics, 2002, 30(1):87-102 [24] Sueet Millon Sahoo, Raja Sekhar T, Raja Sekhar G P. Exact solutions of generalized Riemann problem for rate-type material. International Journal of Non-Linear Mechanics, 2019, 110:16-20 [25] Fusco D, Manganaro N. A method for finding exact solutions to hyperbolic systems of first-order PDEs. IMA Journal of Applied Mathematics, 1996, 57(3):223-242 [26] Meleshko S V, Shapeev V P. The application of the differential-constraints method to the two-dimensional equations of gas dynanics. Journal of Applied Mathematics and Mechanics, 1999, 63(6):885-891 [27] Munteanu L, Donescu S. Introduction to Soliton Theory:Applications to Mechanics. Volume 143. Springer Science & Business Media, 2006 [28] Mentrelli A, Rogers C, Ruggeri T, Schief W K. On two-pulse and shock evolution in a class of ideally hard elastic materials. Asymptotic Methods in Nonlinear Wave Phenomena, 2007:132-143 [29] Rogers C, Schief W K. Bäcklund transformations and superposition principles in nonlinear elastodynamics. Studies in Applied Mathematics, 2010, 124(2):137-149 [30] Rogers C, Schief W K, Szereszewski A. Loop soliton interaction in an integrable nonlinear telegraphy model:reciprocal and Bäcklund transformations. Journal of Physics A:Mathematical and Theoretical, 2010, 43(38):385210 [31] Curró C, Fusco D, Manganaro N. Differential constraints and exact solution to riemann problems for a traffic flow model. Acta Applicandae Mathematicae, 2012, 122(1):167-178 [32] Smoller J. Shock waves and reaction-diffusion equations. Volume 258. Springer Science & Business Media, 2012 |