[1] Antontsev S. Wave equation with p(x, t)-Laplacian and damping term:Existence and blow-up of solutions. Differ Equ Appl, 2011, 3(4):503-525 [2] Antontsev S, Ferreira J. Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions. Nonlinear Anal:Theory Methods Appl, 2013, 93:62-77 [3] Antontsev S, Shmarev S. Evolution PDEs with Nonstandard Growth Conditions:Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations, Vol 4. Atlantis Press, 2015 [4] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 4(66):1383-1406 [5] Ferreira J, Messaoudi S A. On the general decay of a nonlinear viscoelastic plate equation with a strong damping and $\overrightarrow{p}(x,t)$-Laplacian. Nonlinear Anal:TMA, 2014, 104:40-49 [6] Gao Y, Gao W. Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents. Boundary Value Problems, 2013, 2013(1):1-8 [7] Ghegal S, Hamchi I, Messaoudi S A. Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities. Appl Anal, 2018, 1-11 [8] Guo B, Gao W. Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy. C R Mec, 2014, 342(9):513-519 [9] Hughes T J R. The Finite Element Method:Linear Static and Dynamic Finite Element Analysis. Courier Corporation, 2012 [10] Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, 2012 [11] Kafini M, Messaoudi S A. A blow up result in a nonlinear viscoelastic problem with arbitrary positive initial energy. Dyn Contin Disrete Impulsive System, Ser A:Math Anal, 2013, 20(6):657-665 [12] Korpusov M O. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy. Elect J Diff Eqs, 2012, 119:1-10 [13] Lars D, Harjulehto P, Hasto P, Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics. Berlin Heidelberg:Springer-Verlag, 2011, 2017 [14] Mashiyev R A, Buhrii O M. Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity. J Math Anal Appl, 2011, 377:450-463 [15] Messaoudi S A, Talahmeh A A. A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities. Appl Anal, 2017, 96(9):1509-1515 [16] Messaoudi S A, Talahmeh A A. A blow-up result for a quasilinear wave equation with variable- exponent nonlinearities. Math Meth Appl Sci, 2017, 40:6976-6986 [17] Messaoudi S A, Talahmeh A A, Al-Smail J H. Nonlinear damped wave equation:existence and blow-up. Comput Math Appl, 2017, 74:3024-3041 [18] Messaoudi S A, Al-Smail J H, Talahmeh A A. Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput Math Appl, 2018, 76:1863-1875 [19] Messaoudi S A, Talahmeh A A. On wave equation:Review and recent results. Arabian J of Math, 2018, 7:113-145 [20] Mu J E, Racke R. Magneto-thermo-elasticity-large-time behavior for linear systems. Adv Differ Equ, 2001, 6(3):359-384 [21] Newmark N M. A method of computation for structural dynamics. J Engineering Mechanics Division, 1959, 85(3):67-94 [22] Park S H, Kang H R. Blow-up of solutions for a viscoelastic wave equation with variable exponents. Math Meth Appl Sci, 2019, 42:2083-2097 [23] Persson P -O, Strang G. A Simple Mesh Generator in MATLAB. SIAM Review, 2004, 46(2):329-345 [24] Wood W L, Bossak M, Zienkiewicz O C. An alpha modification of Newmark's method. Int J Numerical Methods Eng, 1980, 15(10):1562-1566 |