[1] Kundu A. Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödingertype equations. J Math Phys, 1984, 25(12):3433-3438 [2] Kundu A. Exact solutions to higher-order nonlinear equations through gauge transformation. Physica D, 1987, 25(1/3):399-406 [3] Fan E G. A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J Math Phys, 2001, 42(9):4327-4344 [4] Clarkson P A, Tuszynski J A. Exact-solutions of the multidimensional derivative nonlinear Schrödingerequation for many-body systems near criticality. J Phys A, 1990, 23(19):4269-4288 [5] Kodama Y. Optical solitons in a monomode fiber. J Stat Phys, 1985, 39(5/6):597-614 [6] Wang X, Yang B, Chen Y, Yang Y Q. Higher-order rogue wave solutions of the Kundu-Eckhaus equation. Phys Scr, 2014, 89(9):095210 [7] Wen X Y, Zhang G Q. Modulational instability and dynamics of implicit higher-order rogue wave solutions for the Kundu equation. Mod Phys Lett B, 2018, 32(1):1850005 [8] Xu S W, He J S, Wang L H. The Darboux transformation of the derivative nonlinear Schrödinger equation. J Phys A:Math Theor, 2011, 44(30):305203 [9] Zhang Y S, Guo L J, Xu S W, Wu Z W, He J S. The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation. Commun Nonlinear Sci Numer Simulat, 2014, 19(6):1706-1722 [10] Guo B L, Ling L M, Liu Q P. High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud Appl Math, 2013, 130(4):317-344 [11] Kaup D J, Newell A C. Exact solution for a derivative nonlinear Schrödinger equation. J Math Phys, 1978, 19(4):798-801 [12] Liu H, Geng X G. The vector derivative nonlinear Schrödinger equation on the half-line. IMA J Appl Math, 2018, 83(1):148-173 [13] Yang B, Zhang W G, Zhang H Q, Pei S B. Generalized Darboux transformation and rational soliton solutions for Chen-Lee-Liu equation. Appl Math Comput, 2014, 242:863-876 [14] Zhang N, Xia T C, Fan E G. A Riemann-Hilbert approach to the Chen-Lee-Liu equation on the half line. Act Math Appl Sin Engl Ser, 2018, 34(3):493-515 [15] Zhang Y S, Guo L J, He J S, Zhou Z X. Darboux transformation of the second type derivative nonlinear Schrödinger equation. Lett Math Phys, 2015, 105(6):853-891 [16] Xu S W, He J S. The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J Math Phys, 2012, 53(6):063507 [17] Guo L J, Zhang Y S, Xu S W, Wu Z W, He J S. The higher order rogue wave solutions of the GerdjikovIvanov equation. Phys Scr, 2014, 89(3):035501 [18] Wen X Y, Yang Y Q, Yan Z Y. Generalized perturbation N-fold Darboux transformations and multi-roguewave structures for the modified self-steepening nonlinear Schrödinger equation. Phys Rev E, 2015, 92(1):012917 [19] Nie H, Zhu J Y, Geng X G. Trace formula and new form of N-soliton to the Gerdjikov-Ivanov equation. Anal Math Phys, 2018, 8(3):415-426 [20] Qiu D Q, He J S, Zhang Y S, Porsezian K. The Darboux transformation of the Kundu-Eckhaus equation. Proc R Sco A-Math Phys Eng, 2015, 471(2180):20150236 [21] Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Korteweg-de Vries equation. Phys Rev Lett, 1967, 19(19):1095 [22] Yang J K. Nonlinear Waves in Intergrable and Nonintergrable Systems. Philadelphia:SIAM, 2010 [23] Ablowitz M J, Fokas A S. Complex Variables:Introduction and Applications. New York:Cambridge University Press, 2003 [24] Novikov S, Manakov S, Pitaevskii L, Zakharov V. Theory of Solitons:the Inverse Scattering Method. New York, London:Consultants Bureau, 1984 [25] Fokas A S. Two dimensional linear PDEs in a complex ploygon. Proc R Soc A-Math Phys Eng Sci, 2001, 457(2006):371-393 [26] Zhang Y S, Chen Y, He J S. Riemann-Hilbert method and N-soliton for two component Gerdjikov-Ivanov equation. J Nonlinear Math Phys, 2017, 24(2):210-223 [27] Wang D S, Zhang D J, Yang J K. Integrable properties of the general coupled nonlinear Schrödinger equations. J Math Phys, 2010, 51(2):023510 [28] Wu J, Geng X G. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation. Commun Nonlinear Sci Numer Simul, 2017, 53:83-93 [29] Hu B B, Xia T C, Ma W X. Riemann-Hilbert approach for an initial-boundary value problem of the twocomponent modified Korteweg-de Vries equation on the half-line. Appl Math Comput, 2018, 332:148-159 [30] Hu B B, Xia T C. A Fokas approach to the coupled modified nonlinear Schrödinger equation on the half-line. Math Meth Appl Sci, 2018, 41(13):5112-5123 [31] Hu B B, Xia T C, Zhang N, Wang J B. Initial-boundary value problem for the coupled higher-order Nonlinear Schrödinger equation on the half-line. Int J Nonlinear Sci Numer Simul, 2018, 19(1):83-92 [32] Xiao Y, Fan E G, Xu J. The Fokas-Lenells equation on the finite interval. Acta Math Sci, 2017, 37B(3):852-876 [33] Xu J, Fan E G. A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equation. Acta Math Sci, 201434B(4):973-994 |