数学物理学报(英文版) ›› 2020, Vol. 40 ›› Issue (5): 1391-1404.doi: 10.1007/s10473-020-0513-y

• 论文 • 上一篇    下一篇

THE PERTURBATION PROBLEM OF AN ELLIPTIC SYSTEM WITH SOBOLEV CRITICAL GROWTH

李奇   

  1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
  • 收稿日期:2019-01-16 修回日期:2019-09-03 出版日期:2020-10-25 发布日期:2020-11-04
  • 作者简介:Qi LI,E-mail:qili@mails.ccnu.edu.cn
  • 基金资助:
    Q. Li was supported by the excellent doctorial dissertation cultivation grant (2018YBZZ067 and 2019YBZZ057) from Central China Normal University.

THE PERTURBATION PROBLEM OF AN ELLIPTIC SYSTEM WITH SOBOLEV CRITICAL GROWTH

Qi LI   

  1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
  • Received:2019-01-16 Revised:2019-09-03 Online:2020-10-25 Published:2020-11-04
  • Supported by:
    Q. Li was supported by the excellent doctorial dissertation cultivation grant (2018YBZZ067 and 2019YBZZ057) from Central China Normal University.

摘要: In this paper, we study the following perturbation problem with Sobolev critical exponent: \begin{equation}\label{eqs0.1} \left\{ \begin{array}{ll} -\Delta u=(1+\varepsilon K(x)){{u}^{{{2}^{*}}-1}}+\frac{\alpha }{{{2}^{*}}}{{u}^{\alpha -1}}{{v}^{\beta }}+\varepsilon h(x){{u}^{p}},\ \ &x\in \mathbb{R}^N,\\[2.5mm] -\Delta v=(1+\varepsilon Q(x)){{v}^{{{2}^{*}}-1}}+\frac{\beta }{{{2}^{*}}}{{u}^{\alpha }}{{v}^{\beta -1}}+\varepsilon l(x){{v}^{q}},\ \ &x\in \mathbb{R}^N,\\[2mm] u> 0,\,v> 0,\ \ &x\in \mathbb{R}^N, \end{array} \right. \end{equation} where $0 < p,\,q < 1$, $\alpha +\beta ={{2}^{*}}:=\frac{2N}{N-2}$, $\alpha,\,\beta\geq 2$ and $N=3, 4$. Using a perturbation argument and a finite dimensional reduction method, we get the existence of positive solutions to problem (0.1) and the asymptotic property of the solutions.

关键词: perturbation argument, finite dimensional reduction method, critical exponent

Abstract: In this paper, we study the following perturbation problem with Sobolev critical exponent: \begin{equation}\label{eqs0.1} \left\{ \begin{array}{ll} -\Delta u=(1+\varepsilon K(x)){{u}^{{{2}^{*}}-1}}+\frac{\alpha }{{{2}^{*}}}{{u}^{\alpha -1}}{{v}^{\beta }}+\varepsilon h(x){{u}^{p}},\ \ &x\in \mathbb{R}^N,\\[2.5mm] -\Delta v=(1+\varepsilon Q(x)){{v}^{{{2}^{*}}-1}}+\frac{\beta }{{{2}^{*}}}{{u}^{\alpha }}{{v}^{\beta -1}}+\varepsilon l(x){{v}^{q}},\ \ &x\in \mathbb{R}^N,\\[2mm] u> 0,\,v> 0,\ \ &x\in \mathbb{R}^N, \end{array} \right. \end{equation} where $0 < p,\,q < 1$, $\alpha +\beta ={{2}^{*}}:=\frac{2N}{N-2}$, $\alpha,\,\beta\geq 2$ and $N=3, 4$. Using a perturbation argument and a finite dimensional reduction method, we get the existence of positive solutions to problem (0.1) and the asymptotic property of the solutions.

Key words: perturbation argument, finite dimensional reduction method, critical exponent

中图分类号: 

  • 35J47