[1] |
Duan R. Global solutions for the 1-D compressible micropolar fluid model with zero heat conductivity. J Math Anal Appl, 2018, 463:477-495
|
[2] |
Eringen A C. Theory of micropolar fluids. J Math Mech, 1966, 16:1-18
|
[3] |
Eringen A C. Theory of themomicro fluids. J Math Anal Appl, 1972, 38:480-496
|
[4] |
Mujakovic N. One-dimensional flow of a compressible viscous micropolar fluid:a local exsitence theorem. Glasnil Mathematicki, 1998, 33(53):71-91
|
[5] |
Duan R. Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal RWA, 2018, 42:71-92
|
[6] |
Lukaszewicz G. Micropolar Fluids. Theory and applications, Modeling and Simulation in Science, Engineering and Technology. Baston:Birkhauser, 1999
|
[7] |
Eringen A C. Microcontinuum Field Theories:I. Foundations and Solids. Berlin:Springer, 1999
|
[8] |
Liu Q Q, Yin H Y. Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model. Nonlinear Anal Theory Methods Appl, 2017, 149:41-55
|
[9] |
Jin J, Duan R. Stability of Rarefaction waves for 1-D compressible viscous micropolar fluid model. J Math Anal Appl, 2017, 450:1123-1143
|
[10] |
Cui H B, Yin H Y. Stationary solutions to the one-dimensional micropolar fluid model in a half line:Existence, stability and convergence rate. J Math Anal Appl, 2017, 449:464-489
|
[11] |
Kawashima S, Okada M. Smooth global solutions for one-dimensional equations in magnetohydrodynamics. Proc Japan Acad Ser A, 1982, 58:384-387
|
[12] |
Matsumura A, Nishihara K. Asymptotic toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3:1-13
|
[13] |
Matsumura A, Nishihara K. Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992, 144:325-335
|
[14] |
Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid:a global existence theorem. Glas Mat Ser Ⅲ, 1998, 33(53):199-208
|
[15] |
Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid:regularity of the solution. Rad Mat, 2001, 10:181-193
|
[16] |
Mujaković N. Global in time estimates for one-dimensional compressible viscous micropolar fluid model. Glas Mat Ser Ⅲ, 40(60):103-120
|
[17] |
Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid:stabilization of the solution//Proceedings of the Conference on Applied Mathematics and Scientific Computing. Dordrecht:Springer, 2005:253-262
|
[18] |
Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model:a local existence theorem. Ann Univ Ferrara Sez VⅡ Sci Mat, 2007, 53(2):361-379
|
[19] |
Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model:regularity of the solution. Bound Value Probl, 2008, Article ID 189748
|
[20] |
Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model:a global existence theorem. Math Inequal Appl, 2009, 12:651-662
|
[21] |
Mujaković N. One-dimensional compressible viscous micropolar fluid model:stabilization of the solution for the Cauchy problem. Bound Value Probl, 2010, Article ID 796065
|
[22] |
Chen M T. Global strong solutions for the viscous, micropolar, compressible flow. J Partial Differ Equ, 2011, 24:158-164
|
[23] |
Qin Y, Wang T, Hu G. The Cauchy problem for a 1D compressible viscous micropolar fluid model:analysis of the stabilization and the regularity. Nonlinear Anal Real World Appl, 2012, 13:1010-1029
|
[24] |
Huang L, Nie D Y. Exponential stability for a one-dimensional compressible viscous micropolar fluid. Math Methods Appl Sci, 2015, 38:5197-5206
|
[25] |
Mujaković N, Črnjarić-Žic N. Global solution to 1-D model of a compressible viscous micropolar heatconducting fluid with free boundary. Acta Math Sci, 2016, 36B(6):1541-1576
|
[26] |
Zheng L Y, Chen Z Z, Zhang S N. Asymptotic stability of a composite wave for the one-dimensional compressible micropolar fluid model without viscosity. J Math Anal Appl, 2018, 468:865-892
|
[27] |
Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:a local existence theorem. Bound Value Probl, 2012, 69:1-25
|
[28] |
Chen M T. Blow up criterion for viscous, compressible micropolar fluids with vacuum. Nonlinear Anal Real World Appl, 2012, 13(2):850-859
|
[29] |
Chen M T, Huang B, Zhang J W. Blow up criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum. Nonlinear Anal Theory Methods Appl, 2013, 79:1-11
|
[30] |
Mujaković N, Dražić I. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:uniqueness of a generalized solution. Bound Value Probl, 2014, 226:1-25
|
[31] |
Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:a global existence theorem. Bound Value Probl, 2015, 98:1-25
|
[32] |
Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:large time behavior of the solution. J Math Anal Appl, 2015, 431:545-568
|
[33] |
Chen M T, Xu X Y, Zhang J W. Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum. Commun Math Sci, 2015, 13:225-247
|
[34] |
Liu Q Q, Zhang P X. Optimal time decay of the compressible micropolar fluids. J Differential Equations, 2016, 260:7634-7661
|
[35] |
Wu Z G, Wang W K. The point estimates of diffusion wave of the compressible micropolar fluids. J Differential Equations, 2018, 265:2544-2576
|
[36] |
Huang L, Kong C X. Global behavior for compressible viscous micropolar fluid with spherical symmetry. J Math Anal Appl, 2016, 443:1158-1178
|
[37] |
Dražić I, Simčić L, Mujaković N.3-D flow of a compressible viscous micropolar fluid with spherical symmetry:Regularity of the solution. J Math Anal Appl, 2016, 438:162-183
|
[38] |
Mujaković N, Črnjarić-Žic N. Global solution to 3D problem of a compressible viscous micropolar fluid with spherical symmetry and a free boundary. J Math Anal Appl, 2017, 449:1637-1669
|
[39] |
Su J R. Low Mach number limit of a compressible micropolar fluid model. Nonlinear Anal Real World Appl, 2017, 38:21-34
|
[40] |
Su J R. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete Contin Dyn Syst, 2017, 37(6):3423-3434
|
[41] |
Su J R. Incompressible limit of a compressible micropolar fluid model with general initial data. Nonlinear Anal, 2016, 132:1-24
|
[42] |
Liu T, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1998, 118:451-465
|
[43] |
Huang F M, Li J, Matsumura. Akitaka Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197(1):89-116
|
[44] |
Huang F M, Wang T. Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana Univ Math J, 2016, 65(6):1833-1875
|
[45] |
Huang F M, Wang Y, Wang Y, et al. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45(3):1741-1811
|
[46] |
Huang F M, Wang Y, Yang T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203(2):379-413
|
[47] |
Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data. Commun Inf Syst, 2013, 13(2):211-246
|
[48] |
Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations:I. Superposition of rarefaction waves and contact discontinuity. Kinet Relat Models, 2010, 3(4):685-728
|
[49] |
Huang F M, Li X. Convergence to the rarefaction wave for a model of radiating gas in one-dimension. Acta Math Appl Sin, 2016, 329(2):239-256
|
[50] |
Huang F M, Li M, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44:1742-1759
|
[51] |
Li M J, Wang T, Wang Y. The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients. Anal Appl (Singap), 2015, 13(5):555-589
|
[52] |
Huang F M, Qin X. Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes quations under large perturbation. J Differential Equations, 2009, 246:4077-4096
|
[53] |
Jiu Q S, Wang Y, Xin Z P. Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity. Comm Partial Differential Equations, 2011, 36(4):602-634
|
[54] |
Jiu Q S, Wang Y, Xin Z P. Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity. SIAM J Math Anal, 2013, 45(5):3194-3228
|
[55] |
Li L, Wang Y. Stability of planar rarefaction wave to two-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2018, 50(5):4937-4963
|
[56] |
Li L, Wang T, Wang Y. Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations. Arch Rational Mech Anal, 2018, 230:911-937
|
[57] |
Wang Z A, Zhu C J. Stability of the rarefaction wave for the generalized Kdv-Burgers equation. Acta Math Sci, 2002, 22B(3):319-328
|
[58] |
Zhu C J. Asymptotic behavior of solution for p-system with relaxation. J Differential Equations, 2002, 180(2):273-306
|
[59] |
Duan R, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361(1):453-493
|