[1] Kalashnikov A S. Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations. Russian
Math Surveys, 1987, 42(2): 169--222
[2] Wu Z Q. Degenerate quasilinear parabolic equations (in Chinese). Adv in Math (Beijing), 1987, 16(2): 121--158
[3] Fujita H. On the blowing up of solutions of the Cauchy problem for ∂u / ∂t=?u+u1+α. J Fac Sci Univ Tokyo Sect I, 1996, 13: 109--124
[4] Deng K, Levine H A. The role of critical exponents in blow-up theorems: the sequel. J Math Anal Appl, 2000, 243(1): 85--126
[5] Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32(2): 262--288
[6] Ackleh A S, Deng K. On the critical exponent for the Schrodinger equation with a nonlinear boundary condition. Differential Integral Equations, 2004, 17(11/12): 1293--1307
[7] Ikehata R. Critical exponent for semilinear damped wave equations in the N-dimensional half space. J Math Anal Appl, 2003, 288(2): 803--818
[8] Quiros F, Rossi J D. Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions. Indiana Univ Math J, 2001, 50: 629--654
[9] Wang C P, Zheng S N. Critical Fujita exponents of degenerate and singular parabolic equations. Proc Roy Soc Edinburgh Sect A, 2006, 136: 415--430
[10] Wang Z J, Yin J X, Wang L S. Critical exponent for non-Newtonian filtration equation with homogeneous Neumann boundary data. Math Methods Appl Sci, 2007, in press
[11] Winkler M. A critical exponent in a degenerate parabolic equation. Math Methods Appl Sci, 2002, 25: 911--925
[12] Lady\vzenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and quasilinear equations of parabolic type. Transl Math Mono, 23, AMS. Providence RI, 1967
[13] Wu Z Q, Zhao J N, Yin J X et al. Nonlinear diffusion equations. Singapore: World Scientific Publishing Co, Inc, 2001
[14] Qi Y W. The critical exponents of parabolic equations and blow-up in ${\mathbb R}^n$. Proc Roy Soc Edinburgh Sect A, 1998, 128(1): 123--136 |