[1] |
Bartsch T, Jeanjean L, Soave N. Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb{R}^3$. J Math Pures Appl, 2016, 106(4):583-614
|
[2] |
Cao D, Noussair E S, Yan S. On the scalar curvature equation -△u=(1+ εK)u(N+2)/(N-2) in $\mathbb{R}^N$. Calc Var Partial Differ Equ, 2002, 15(3):403-419
|
[3] |
Chen Z, Zou W. Positive least energy solutions and phase seperation for coupled Schrödinger equations with critical exponent. Arch Ration Mech Anal, 2012, 205(2):515-551
|
[4] |
Chen Z, Zou W. Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans Amer Math Soc, 2015, 367(5):3599-3646
|
[5] |
Deng Y, Peng S, Shuai W. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$. J Funct Anal, 2015, 269(11):3500-3527
|
[6] |
Peng S, Wang C, Yan S. Construction of solutions via local Pohozaev identities. J Funct Anal, 2018, 274(9):2606-2633
|
[7] |
Peng S, Wang Q, Wang Z-Q. On coupled nonlinear Schrödinger systems with mixed couplings. Trans Amer Math Soc, 2019, 371(11):7559-7583
|
[8] |
Peng S, Shuai W, Wang Q. Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent. J Differ Equ, 2017, 263(1):709-731
|
[9] |
Peng S, Wang Z-Q. Segregated and synchronized vector solutions for nonlinear schrödinger system. Arch Rational Mech Anal, 2013, 208(1):305-339
|
[10] |
Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36(4):437-477
|
[11] |
Aubin T. Problemes isoperimetriques et espaces de Sobolev. J Differ Geom, 1976, 11(4):573-598
|
[12] |
Swanson C. The best Sobolev constant. Appl Anal, 1992, 47(4):227-239
|
[13] |
Talenti G. Best constant in Sobolev inequality. Ann Mat Pure Appl, 1976, 110(1):353-372
|
[14] |
Peng S, Peng Y, Wang Z-Q. On elliptic systems with Sobolev critical growth. Calc Var Partial Differ Equ, 2016, 55(6):Art 142, 30 pp
|
[15] |
Abdellaoui B, Felli V, Peral I. Some remarks on systems of elliptic equations doubly critical in the whole $\mathbb{R}^N$. Calc Var Partial Differ Equ, 2009, 34(1):97-137
|
[16] |
Chen Z, Zou W. Positive least energy solutions and phase seperation for coupled Schrödinger equations with critical exponent:higher dimensional case. Calc Var Partial Differ Equ, 2015, 52(1/2):423-467
|
[17] |
Ambrosetti A, Garcia Azorero J, Peral I. Perturbation of △u + u(N+2)(N-2)=0, the scalar curvature problem in $\mathbb{R}^N$ and related topics. J Funct Anal, 1999, 165(1):117-149
|
[18] |
Ambrosetti A, Garcia Azorero J, Peral I. Elliptic variational problems in $\mathbb{R}^N$ with critical growth. J Differ Equ, 2000, 168(1):10-32
|
[19] |
Ambrosetti A, Badiale M. Homoclinics:Poincaré-Melnikov type results via variational approach. Ann Inst H Poincaré Anal Non Linéaire, 1998, 15(2):233-252
|
[20] |
Ambrosetti A, Badiale M. Variational perturbative methods and bifurcation of bound statea from the essential spectrum. Proc Royal Soc Edinburgh A, 1998, 128(6):1131-1161
|
[21] |
Wang C, Zhou J. Infinitely many solitary waves due to the second-Harmonic generation in quadratic media. Acta Math Sci, 2020, 40B(1):16-34
|
[22] |
Li G, Wang C. The existence of nontrivial solutions to a semiliuear elliptic system on $\mathbb{R}^N$ without the Ambrosetti-Rabinouitz condition. Acta Math Sci, 2010, 30B(6):1917-1936
|