[1] Dibenedetto E. Degenerate Parabolic Equations. Berlin: Springer-Verlag, 1993
[2] Vázquez J L. The porousmedium equation, Mathematical Theory. Oxford Mathematical Monographs. Ox- ford: Oxford University Press, 2007
[3] Calsina A, Perello C, Saldana J. Non-local reaction-diffusion equations modelling predator-prey coevolution. Publ Math, 1994, 32: 315-325
[4] Furter J, Grinfeld M. Local vs nonlocal interactions in population dynamics. J Math Biol, 1989, 27: 65-80
[5] Galaktionov V A, Peletier L A, Vazquez J L. Asymptotics of fast-diffusion equation with critical exponent. SIAM J Math Anal, 2000, 31: 1157-1174
[6] Galaktionov V A, Vazquez J L. Asymptotic behavior of nonlinear parabolic equations with critical expo- nents. A dynamical system approach. J Funct Anal, 1991, 100: 435-462
[7] Galaktionov V A, Vazquez J L. Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison. Commun Partial Differential Equations, 1994, 19: 1075-1106
[8] Galaktionov V A, Vazquez J L. Extinction for a quasilinear heat equation with absorption II. A dynamical system approach. Commun Partial Differential Equations, 1994, 19: 1107-1137
[9] Han Y Z, Gao W J. Extinction for a fast diffusion equation with a nonlinear nonlocal source. Arch Math, 2011, 97: 353-363
[10] Han Y Z, Gao W J. Extinction and non-extinction for a polytropic filtration equation with a nonlocal source. Appl Anal, 2013, 92: 636-650
[11] Leoni G. A very singular solution for the porous media equation ut = Δum - up when 0
[12] Liu W J, Wang M X, Wu B. Extinction and Decay Estimates of Solutions for a Class of Porous Medium Equations. J Inequalities and Applications, 2007, 2007: 1-8
[13] Wang Y F, Yin J X. Critical extinction exponents for a polytropic filtration equation with absorption and source. Math Method Appl Sci, 2013, 36: 1591-1597
[14] Yin J X, Li J, Jin C H. Non-extinction and critical exponent for a polytropic filtration equation. Nonl Anal, 2009, 71: 347-357
[15] Yin J X, Jin C H. Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources. Proceedings of the Edinburgh Mathematical Society, 2009, 52: 419-444
[16] Zheng P, Mu C L. Extinction and decay estimates of solutions for a polytropic filtration equation with the nonlocal source and interior absorption. Math Method Appl Sci, 2013, 36: 730-743
[17] Anderson J R. Local existence and uniqueness of solutions of degenerate parabolic equations. Commun Partial Differential Equations, 1991, 16: 105-143
|