数学物理学报(英文版) ›› 2013, Vol. 33 ›› Issue (4): 1099-1112.doi: 10.1016/S0252-9602(13)60066-1

• 论文 • 上一篇    下一篇

p-LAPLACE EQUATIONS WITH MULTIPLE CRITICAL EXPONENTS AND SINGULAR CYLINDRICAL POTENTIAL

孙小妹   

  1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    College of Science, Huazhong Agricultural University, Wuhan 430070, China
  • 收稿日期:2012-04-19 修回日期:2012-06-04 出版日期:2013-07-20 发布日期:2013-07-20
  • 基金资助:

    Supported by the National Science Foundation of China (11071245 and 11101418).

p-LAPLACE EQUATIONS WITH MULTIPLE CRITICAL EXPONENTS AND SINGULAR CYLINDRICAL POTENTIAL

 SUN Xiao-Mei   

  1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    College of Science, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2012-04-19 Revised:2012-06-04 Online:2013-07-20 Published:2013-07-20
  • Supported by:

    Supported by the National Science Foundation of China (11071245 and 11101418).

摘要:

In this paper, we deal with the following problem:
{−Δpu − λ|y|p|u|p−2u = |y|s|u|p*(s)−2u + |u|p*−2u in RN, y ≠ 0,
u ≥ 0,
where u(x) = u(y, z) : Rm × RNm −→ R, N ≥ 3, 2 < m < N, 1 < p < m, λ <( (mp)/p )p and 0 < s < p, p*(s) = p(Ns)/Np , p* = pN/Np . By variational method, we prove the existence of a nontrivial weak solution when 0 < λ <( (mp/ p ))p and the existence of a cylindrical weak solution when λ < 0.

关键词: p-Laplace equation, cylindrical potential, critical exponents

Abstract:

In this paper, we deal with the following problem:
{−Δpu − λ|y|p|u|p−2u = |y|s|u|p*(s)−2u + |u|p*−2u in RN, y ≠ 0,
u ≥ 0,
where u(x) = u(y, z) : Rm × RNm −→ R, N ≥ 3, 2 < m < N, 1 < p < m, λ <( (mp)/p )p and 0 < s < p, p*(s) = p(Ns)/Np , p* = pN/Np . By variational method, we prove the existence of a nontrivial weak solution when 0 < λ <( (mp/ p ))p and the existence of a cylindrical weak solution when λ < 0.

Key words: p-Laplace equation, cylindrical potential, critical exponents

中图分类号: 

  • 35J20