[1] Ozaki S, Nunokawa M. The Schwarzian derivative and univalent functions. Proc Amer Math Soc, 1972, 33:392-394 [2] Obradović M, Ponnusamy S. Product of univalent functions. Math Comput Modell, 2013, 57:793-799 [3] Obradović M, Ponnusamy S. New criteria and distortion theorems for univalent functions. Complex Variables, Theory and Application:An International Journal, 2001, 44(3):173-191 [4] Obradović M, Ponnusamy S. Univalence and starlikeness of certain transforms defined by convolution. J Math Anal Appl, 2007, 336:758-767 [5] Obradović M, Ponnusamy S. Radius of univalence of certain combination of univalent and analytic functions. Bull Malays Math Sci Soc, 2012, 35(2):325-334 [6] Fournier R, Ponnusamy S. A class of locally univalent functions defined by a differential inequality. Complex Variables and Elliptic Equations:An International Journal, 2007, 52(1):1-8 [7] Peng Z, Zhong G. Some properties for certain classes of univalent functions defined by differential inequalities. Acta Mathematica Scientia, 2017, 37B(1):69-78 [8] Duren P L. Univalent Functions. New York:Springer-Verlag, 1983 [9] Prokhorov D V, Szynal J. Inverse coefficients for (α, β)-convex functions. Ann Univ Mariae CurieSklodowska, 1981, 35:125-143 [10] Libera R J. Some classes of regular univalent functions. Proc Amer Math Soc, 1965, 16:755-758 [11] Nunokawa M, Sokol J, Cho N E, et al. Conditions for starlikeness of the libera operator. J Inequal Appl, 2014, 1:1-9 [12] Sokol J. Starlikeness of the Libera transform of functions with bounded turning. Appl Math Comput, 2008, 203:273-276 [13] Miller S S, Mocanu P T. Libera transform of functions with bounded turning. J Math Anal Appl 2002, 276:90-97 [14] Ponnusamy S. On starlikeness of certain integral transforms. Annales Polonici Mathematici, 1992, 56(3):227-232 [15] Duren P L. Theory of Hp Spaces. New York:Academic Press, 1970 |