[1] Hallenbeck K T. The Abu-Muhanna conjecture on support points. Scientiae Mathematicae Japonicae Online, e-2010:129-132
[2] Hallenbeck D J, Hallenbeck K T. Classes of analytic functions subordinate to convex functions and extreme points. J Math Anal Appl, 2003, 282:792-800
[3] Hallenbeck D J, Hallenbeck K T. Extreme Points and support points of subordination families. J Math Anal Appl, 2000, 251:157-166
[4] Hallenbeck D J, MacGregor T H. Linear Problems and Convexity Techniques in Geometric Function Theory. Boston, London, Melbourne:Pitman Advanced Publishing Program, 1984
[5] Hallenbeck D J, MacGregor T H. Support points of families of analytic functions described by subordination. Trans Amer Math Soc, 1983, 278:523-546
[6] Bellamy D P, Tkaczynska K. Extreme points of some classes of analytic functions with positive real part and a prescribed set of coefficients. Compl Var Ellip Equ Int J, 1991, 17:49-55
[7] Abu-Muhanna Y. Support points of the unit ball of Hp (1 ≤ p ≤ ∞). Proc Amer Math Soc, 1983, 89:229-235
[8] Abu-Muhanna Y, MacGregor T H. Extreme points of families of analytic functions subordinate to convex mappings. Math Z, 1981, 176:511-519
[9] Gevirtz J. On extreme points of families of analytic functions with values in a convex set. Math Z, 1986, 193:79-83
[10] Cochrane P C, MacGregor T H. Frechet differentiable functionals and support points for families of analytic functions. Trans Am Math Soc, 1978, 236:75-92
[11] Peng Z G. The extreme points of a class of analytic functions with positive real part and a prescribed set of values. Acta Math Sci, 2012, 32B:1929-1936
[12] Peng Z G. The support of several classes of analytic functions with fixed coefficients. J Math Anal Appl, 2008, 340:209-218
[13] Sokol J, Wisniowska-Wajnryb A. On certain problem in the class of k-starlike functions. Comput Math Appl, 2011, 62(12):4733-4741
[14] Nunokawa M, Sokol J. The univalence of α-project starlike functions. Math Nach, 2014, 1-7, DOI 10.1002/mana.201300017
[15] Ozaki S, Nunokawa M. The Schwarzian derivative and univalent functions. Proc Amer Math Soc, 1972, 33:392-394
[16] Obradovic M, Ponnusamy S. Product of univalent functions. Math Comput Model, 2013, 57:793-799
[17] Obradovic M, Ponnusamy S. New criteria and distortion theorems for univalent functions. Compl Var, Theory Appl Int J, 2001, 44(3):173-191
[18] Obradovic M, Ponnusamy S. Univalence and starlikeness of certain transforms defined by convolution. J Math Anal Appl, 2007, 336:758-767
[19] Obradovic M, Ponnusamy S. Radius of univalence of certain combination of univalent and analytic functions. Bull Malays Math Sci Soc, 2012, 35(2):325-334
[20] Fournier R, Ponnusamy S. A class of locally univalent functions defined by a differential inequality. Complex Var Elliptic Equ Int J, 2007, 52(1):1-8
[21] Duren P L. Univalent Functions. New York:Springer-Verlag, 1983 |