[1] Guo Y, Tice I. Linear Rayleigh-Taylor instability for visccous, compressible fluids. SIAM J Math Anal, 2011, 42: 1688-1720
[2] Rayleigh L. Analytic solutions of the Rayleigh equations for linear density profiles. Proc London Math Soc, 1883, 14: 170-177
[3] Rayleigh L. Investigation of the character of the equilibrium of an incompressibleheavy fluid of variable density. Scientific Papaer, 1900, II: 200-207
[4] Taylor G I. The stability of liquid surace when accelerated in a direction perpendicular to their planes. Proc Roy Soc A, 1950, 201: 192-196
[5] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Oxford: Clarendon Press, 1961
[6] Wang J. Two-Dimensional Nonsteady Flows and Shock Waves (in Chinese). Beijing: Scientific Press, 1994
[7] Erban D. The equations of motion of a perfect fluid with free boundary are not well posed. Comm Partial Differential Equations, 1987, 12: 1175-1201
[8] Erban D. Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids. Comm Partial Differential Equations, 1988, 13: 1265-1295
[9] Guo Y, Tice I. Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ Math J, 2011, 60: 677-712
[10] Pruess J, Simonett G. On the Rayleigh-Taylor instability for the two-phase Navier Stokes equations. Indiana Univ Math J, 2010, 59(3): 1853-1871
[11] Wang Y J, Tice I. The viscous surface-internal wave problem: nonlinear Rayleigh-Tayor instability. Comm Partial Differential Equations, 2012, 37: 1967-2028
[12] Jiang F, Jiang S, Wang W W. On the Rayleigh-Taylor instability for two uniform viscous incompressible flows. Chinese Ann Math B, 2014, 35(6): 907-940
[13] Jiang F, Jiang S, Wang Y J. On the Rayleigh Taylor instability for the incompressible viscous magnetohy- drodynamic equations. Comm Partial Differential Equations, 2014, 39: 399-438
[14] Duan R, Jiang F, Jiang S. On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydro- dynamic flows. SIAM J Appl Math, 2011, 71: 1990-2013
[15] Hide R. Waves in a heavy, viscous, incompressible, electrically conducting fluid of variable density, in the presence of a magnetic field. Proc R Soc Lond, 1955, 233A: 376-396
[16] Kruskal M, Schwarzschild M. Some instabilities of a completely ionized plasma. Proc R Soc Lond A, 1954, 233: 318-360
[17] Wang Y J. Critical magnetic number in the MHD Rayleigh-Taylor instability. J Math Phys, 2012: 1967- 2028
[18] Abdallah A M, Jiang F, Tan Z. Decay estimates for isentropic compressible magnetohydrodynamic equa- tions in bounded demain. Acta Mathematica Scientia, 2012, 32B(6): 2211-2220
[19] Philipe G L, Siddhartha M. Kinetic function in magnetohydrodynamic with resistivity and Hall effect. Acta Mathematica Scientia, 2009, 29B(6): 1684-1702
[20] Wang S, Xu Z L. Incompressible limit of the non-isentropic magnetohydrodynamic equations in bounded domains. Acta Mathematica Scientia, 2015, 35B(3): 719-745
[21] Jiu Q S, Niu D J. Mathematical results related to a two-dimensional magneto-hydrodynanic equations. Acta Mathematica Scientia, 2006, 26B(4): 744-756
[22] Xie H Z, Zi R Z. Remarks on the nonlinear instability of in compressible Euler equations. Acta Mathematica Scientia, 2011, 31B(5): 1877-1888
[23] Guo Y, Hwang H J. On the dynamical Rayleigh-Taylor instability. Arch Ration Mech Anal, 2003, 167(3): 235-253
[24] Hwang H J. Variational approach to nonlinear gravity-driven instabilities in a MHD setting. Quart Appl Math, 2008, 66(2): 303-324
[25] Jiang F, Jiang S. On instability and stability of three-dimensional gravity driven viscous flows in a bounded domain. Adv Math, 2014, 264: 831-863
[26] Jiang F, Jiang S , Ni G X. Nonlinear instability for nonhomogeneous incompressible viscous fluids. Sci. China Math, 2013,56: 665-686
[27] Khan A, Tak S S, Sharma N. Rayleigh Taylor instability of rotating compressible fluid through porous media. Meccanica, 2011, 46: 1331-1340
[28] Freireisl E, Gallagher I, Novotný A. A singular limit for compressible rotating fluids. SIAM J Math Anal, 2012, 44(1): 192-205
[29] Wehausen J, Laitone E. Surface waves. Handbuch der Physik, 1960, 9: 446-778 |