[1] Bayart F, Matheron É. Dynamics of Linear Operators. Cambridge:Cambridge University Press, 2009 [2] Bernal-González L, Grosse-Erdmann K G. The Hypercyclicity Criterion for sequences of operators. Studia Math, 2003, 157(1):17-32 [3] Grosse-Erdmann K G, Peris Manguillot A. Linear Chaos. London:Springer, 2011 [4] Bernal-González L. Disjoint hypercyclic operators. Studia Math, 2007, 182(2):113-131 [5] Bès J, Peris A. Disjointness in hypercyclicity. J Math Anal Appl, 2007, 336:297-315 [6] Bès J, Martin Ö, Sanders R. Weighted shifts and disjoint hypercyclicity. J Oper Theory, 2014, 72(1):15-40 [7] Sanders R, Shkarin S. Existence of disjoint weakly mixing operators that fail to satisfy the Disjoint Hypercyclicity Criterion. J Math Anal Appl, 2014, 417(2):834-855 [8] Bès J, Martin Ö. Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houston J Math, 2012, 38(4):1149-1163 [9] Bès J, Martin Ö, Peris A. Disjoint hypercyclic linear fractional composition operators. J Math Anal Appl, 2011, 381(2):843-856 [10] Martin Ö. Disjoint hypercyclic and supercyclic composition operators[D]. Bowling Green State University, 2010 [11] Liang Y X, Zhou Z H. Disjoint supercyclic powers of weighted shifts on weighted sequence spaces. Turk J Math, 2014, 38:1007-1022 [12] Martin Ö, Sanders R. Disjoint supercyclic weighted shifts. Integr Equ Oper Theory, 2016, 85(2):191-220 [13] Han S A, Liang Y X. Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect Math, 2016, 67(3):347-356 [14] Liang Y X, Xia L. Disjoint supercyclic weighted translations generated by aperiodic elements. Collect Math, 2017, 68:265-278 [15] Wang Y, Zhou Z H. Disjoint hypercyclic powers of weighted pseudo-shifts. Bull Malays Math Sci Soc, 2017, 41(2):1-20. https://doi.org/10.1007/s40840-017-0584-7 [16] Bès J, Martin Ö, Peris A, et al. Disjoint mixing operators. J Funct Anal, 2012, 263(5):1283-1322 [17] Salas H. Dual disjoint hypercyclic operators. J Math Anal Appl, 2011, 374(1):106-117 [18] Shkarin S. A short proof of existence of disjoint hypercyclic operators. J Math Anal Appl, 2010, 367(2):713-715 [19] Zhang L, Zhou Z H. Disjointness in supercyclicity on the algebra of Hilbert-Schmidt operators. Indian J Pure Appl Math, 2015, 46(2):219-228 [20] Salas H. The Strong Disjoint Blow-up/Collapse Property. J Funct Spaces Appl, 2013, 6 pages. Article ID:146517 [21] Grosse-Erdmann K G. Hypercyclic and chaotic weighted shifts. Studia Math, 2000, 139(1):47-68 [22] Hazarika M, Arora S C. Hypercyclic operator weighted shifts. Bull Korean Math Soc, 2004, 41(4):589-598 [23] Liang Y X, Zhou Z H. Hereditarily hypercyclicity and supercyclicity of weighted shifts. J Korean Math Soc, 2014, 51(2):363-382 |