[1] Ye Q X, Li Z Y, Wang M X, Wu Y P. Introduction to Reaction Diffusion Equations. 2nd ed. Beijing:Scince Press, 2011 [2] So J W H, Wu J H, Zou X F. A reaction diffusion model for a single species with age structure. I. Traveling wavefronts on unbounded domains. Proc R Soc Lond Ser A Math Phys Eng Sci, 2001, 457:1841-1853 [3] Ma S W. Traveling waves for non-local delayed diffusion equations via auxiliary equations. J Differential Equations, 2007, 237:259-277 [4] Wang H Y. On the existence of traveling waves for delayed reaction-diffusion equations. J Differential Equations, 2009, 247:887-905 [5] Gourley S A, Kuang Y. Wavefronts and global stability in a time-delayed population model with stage structure. Soc Lond Ser A Math Phys Eng Sci, 2003, 459:1563-1579 [6] Smith H L, Zhao X Q. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J Math Anal, 2000, 31:514-534 [7] Lin C K, Lin C T, Lin Y, Mei M. Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation. SIAM J Math Anal, 2014, 46:1053-1084 [8] Chern I L, Mei M. Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay. J Differential Equations, 2015, 259:1503-1541 [9] Lin C K, Mei M. On traveling wavefronts of Nicholson's blowflies equation with diffusion. Proc R Soc Lond Ser A, 2010, 140(A):135-152 [10] Mei M, So J W H, Li M Y, Shen S S. Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion. Proc Roy Soc Edinburgh Sect A, 2004, 134:579-594 [11] Mei M, So J W H. Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation. Proc Roy Soc Edinburgh Sect A, 2008, 138:551-568 [12] Mei M, Lin C K, Lin C T, So J W H. Traveling wavefronts for time-delayed reaction-diffusion equation:(I) Local nonlinearity. J Differential Equations, 2009, 247:495-510 [13] Mei M, Lin C K, Lin C T, So J W H. Traveling wavefronts for time-delayed reaction-diffusion equation:(II) Nonlocal nonlinearity. J Differential Equations, 2009, 247:511-529 [14] Lv G Y, Wang M X. Nonlinear stability of traveling waves for delayed reaction diffusion equations. Nonlinearity, 2010, 21:845-873 [15] Lv G Y, Wang X H. Stability of traveling wave solutions to delayed evolution equation. J Dyn Control Syst, 2015, 21:173-187 [16] Yang Y R, Li W T, Wu S L. Exponential stability of traveling fronts in a diffusion epidemic system with delay. Nonlinear Anal RWA, 2011, 12:1223-1234 [17] Yang Y R, Li W T, Wu S L. Stability of traveling waves in a monostable delayed system without quasimonotonicity. Nonlinear Anal RWA, 2013, 14:1511-1526 [18] Liu L. Stability of Monostable Traveling Wave Solutions of Reaction-Diffusion Equations with Nonlocal Delay[D]. Lanzhou:Lanzhou Jiaotong University, 2016 [19] Zhou Y H, Yang Y R, Liu K P. Stability of traveling waves in a population dynamic model with delay and quiescent stage. Acta Mathematica Scientia, 2018, 38B(3):1001-1024 [20] Sattinger D H. On the stability of waves of nonlinear parabolic systems. Adv Math, 1976, 22:312-355 [21] Liu K P, Yang Y R. Stability of critical traveling waves for a reaction-diffusion with nonlocal delay and without quasi-monotonicity. preparation [22] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heatconductive gases. J Math Kyoto Univ, 1980, 20:67-104 [23] Mei M. Global smooth solutions of the Cauchy problem for higher-dimensional generalized pulse transmission equations. Acta Math Appl Sin, 1991, 14:450-461(in Chinese) |