[1] Golubov B I, Efimov A V, Skvortsov V A. Walsh Series and Transforms:Theory and Applications. Moscow: Nauka, 1987; Dordrecht:Kluwer Academic Publishers, 1991
[2] Agaev G N, Vilenkin N Ya, Dzhafarli G M, Rubinshtejn A I. Multiplicative systems of functions and harmonic analysis on zero-dimensional groups. Baku:Ehlm, 1981:180(in Russian)
[3] Vilenkin N Ja. On a class of complete orthonormal systems. Amer Math Soc Transl (2), 1963, 28:1-35
[4] Blyumin S L. Certain properties of a class of multiplicative systems and questions of approximation of functions by polynomials in these systems. Izv Vyssh Uchebn Zaved Mat, 1968, (4):13-22
[5] Gosselin J A. Convergence a.e. Vilenkin-Fourier series. Trans Amer Math Soc, 1973, 185:345-370
[6] Price J J. Certain groups of orthonormal step functions. Canad J Math, 1957, 9(3):413-425
[7] Zubakin A M. The correction theorems of Men'sov for a certain class of multiplicative orthonormal systems of functions. Izv Vyssh Uchebn Zaved Mat, 1969, (12):34-46
[8] Watari C. On generalized Walsh Fourier series. Tohoku Math J (2), 1958, 73(8):435-438
[9] Young W -S. Mean convergence of generalized Walsh-Fourier series. Trans Amer Math Soc, 1976, 218: 311-320
[10] Billard P. Sur la convergence presque partout des series de Fourier-Walsh des fonctions de l'espace L2(0, 1). Studia Math, 1967, 28(3):363-388
[11] Luzin N N. On the fundamental theorem of the integral calculus. Mat Sb, 1912, 28(2):266-294(in Russian)
[12] Men'shov D E. Sur la representation des fonctions measurables des series trigonometriques. Mat Sbornik, 9(3):667-692
[13] Grigorian M G. On convergence of Fourier series in complete orthonormal systems in the L1 metric and almost everywhere. Math USSR-Sb, 1991, 70(2):445-466
[14] Grigorian M G. On the representation of functions by orthogonal series in weighted Lp spaces. Studia Math, 1999, 134(3):207-216
[15] Grigorian M G. On the Lp μ-strong property of orthonormal systems. Math Sbornik, 2003, 194(10):1503- 1532
[16] Grigorian M G, Kazarian K S, Soria F. Mean convergence of orthonormal Fourier series of modified functions. Trans Amer Math Soc (TAMS), 2000, 352(8):3777-3799
[17] Grigoryan M G. Modifications of functions, Fourier coefficients and nonlinear approximation. Math Sbornik, 2012, 203(3):351-379
[18] Olevskii A M. The existence of functions with unremovable Carleman singularities. Soviet Math Dokl, 1978, 194:102-106
[19] Price J J. Walsh series and adjustment of functions on small sets. Illinois J Math, 1969, 13(1):131-136 |