[1] Bresch D, Desjardins B. Existence of global weak solutions for a 2D viscous shallow water equations and
convergence to the quasi-geostrophic model. Comm Math Phys, 2003, 238(1/2): 211–223
[2] Bresch D, Desjardins B. Quelques modeles diffusifs capillaires de type Korteweg. C R Acad Sci, Paris, section mecanique, 2004, 332 (11): 881–886
[3] Bresch D, Desjardins B. On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J Math Pures Appl, 2006, 86: 362–368
[4] Bresch D, Desjardins B, Lin Chi-Kun. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28(3/4): 843–868
[5] Bresch D, Desjardins B, Gerard-Varet D. On compressible Navier-Stokes equations with density dependent
viscosities in bounded domains. J Math Pures Appl, 2007, 87(2): 227–235
[6] Cho Y, Kim H. Existence results for viscous polytropic fluids with vacuum. Hokkaido University Preprint Series in Math, 2003, 675
[7] Cho Y, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Apple, 2004, 83: 243–275
[8] Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equation with nonnegative initial densities. Manuscripta Math, 2006: 91–129
[9] Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579–614
[10] Dou C S, Jiu Q S. A remark on free boundary problem of 1-D compressible Navier-Stokes equations with density-dependent viscosity. Math Meth Appl Sci, 2010, 33: 103–116
[11] Feireisl E, Novotn´y A, Petzeltov´a H. On the existence of globally defined weak solutions to the Navier-Stokes
equations of isentropic compressible fluids. J Math Fluid Mech, 2001, 3: 358–392
[12] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes equations. New York: Springer-Verlag, 1994
[13] Gerbeau J F, Perthame B. Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numer-ical Validation. Discrete and Continuous Dynamical Systems, 2001, 1B(1): 89–102
[14] Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39(5): 1402–1427
[15] Guo Z H, Li H L, Xin Z P. Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations. (English) Commun Math Phys, 2012, 309(2): 371–412
[16] Hoff D. Global existence of 1D compressible isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303(1): 169–181
[17] Hoff D. Compressible flow in a half-space with Navier boundary conditions. J Math Fluid Mech, 2005, 7(3): 315–338
[18] Hoff D. Strong convergence to global solutions for multidimensional flows of compressible viscous fluids with polytropic equations of state and discontinuous initial data. Arch Rat Mech Anal, 1995, 132: 1–14
[19] Hoff D. The zero-Mach limit of compressible flows. Comm Math Phys, 1998, 192: 543–554
[20] Huang X D, Li J. Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data. preprint. arxiv:1207.3746
[21] Huang X D, Li J. Existence and blowup behavior of global strong solutions to the two-dimensional baratropic
compressible Navier-Stokes system with vacuum and large initial data. http://arxiv.org/abs/1205.5342
[22] Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of
compressible flow. SIAM J Appl Math, 1991, 51: 887–898
[23] Hoff D, Smoller J. Non-formation of vacuum states for compressible Navier-Stokes equations. Comm Math Phys, 2001, 216(2): 255–276
[24] Itaya N. On the Cauchy problem for the system of fundamental quations desctibing the movement of compressible viscous fluids. Kodai Math Sep, 1971, 23: 60–120
[25] Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190: 169–183
[26] Jiang S, Xin Z P, Zhang P. Global weak solutions to 1D compressible isentropy Navier-Stokes with density-
dependent viscosity. Methods and Applications of Analysis, 2005, 12(3): 239–252
[27] Jiu Q S, Xin Z P. The Cauchy problem for 1D compressible flows with density-dependent viscosity coeffi-cients. Kinet Relat Models, 2008, 1(2): 313–330
[28] Jiu Q S, Wang Y, Xin Z P. Stability of Rarefaction Waves to the 1D Compressible Navier-Stokes Equations with Density-dependent Viscosity. Comm Partial Differential Equations, 2011, 36: 602–634
[29] Jiu Q S, Wang Y, Xin Z P. Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum. arXiv:1202.1382v1
[30] Jiu Q S, Wang Y, Xin Z P. Global well-posedness of the Cauchy problem of 2D compressible Navier-Stokes
equations in weighted spaces. J Dierential Equations, 2013, 255(3): 351–404
[31] Jiu Q S, Wang Y, Xin Z P. Global classical solutions to the two-dimensional compressible Navier-Stokes equations in R2. http://arxiv.org/abs/1209.0157vl
[32] Jurgen J. Partial Differential Equations. Second Edition. New York: Springer-Verlag, 2006: 224
[33] Kanel J I. A model system of equations for the one-dimensional motion of a gas. (Russian) Differencial’nye
Uravnenija, 1968, 4: 721–734
[34] Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 273–282; Translated from: Prikl Mat Meh, 1977, 41 : 282–291
[35] Li H L, Li J, Xin Z P. Vanishing of Vacuum States and Blow-up Phenomena of the Compressible Navier-Stokes Equations. Comm Math Phys, 2008, 281(2): 401–444
[36] Lions P L. Existence globale de solutions pour les equations de Navier-Stokes compressibles isentropoques.
C R Acad Sci, 1993, 316: 1335–1340
[37] Lions P L. Mathematical Topics in Fluid Dynamics 2, Compressible Models. Oxford: Oxford Science Publication, 1998
[38] Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Continuous Dynam systems, 1998, 4(1): 1–32
[39] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20(1): 67–104
[40] Matsumura A, Nishida T. The initial boundaty value problems for the equations of motion of compressible and heat-conductive fluids. Comm Math Phys, 1983, 89: 445–464
[41] Mellet A, Vasseur A. On the isentropic compressible Navier-Stokes equation. Comm Partial Differential Equations, 2007, 32: 431–452
[42] Mellet A, Vasseur A. Existence and uniqueness of global strong solutions for one-dimensional compressible
Navier-Stokes equations. SIAM J Math Anal, 2008, 39(4): 1344–1365
[43] Nash J. Le problem de Cauchy pour les equations differentielles d’un fluide general. Bull Soc Math France, 1962, 90: 487–497
[44] Okada M, Matusu-Necasova S, Makino T. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII (NS), 2002, 48: 1–20
[45] Perepelitsa M. On the global existence of weak solutions for the Navier-Stokes equations of compressible fluid flows. SIAM J Math Anal, 2006, 38(1): 1126–1153
[46] Serre D. Sur l´equation monodimensionnelle d´un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris S´er I, 1986, 303: 703–706
[47] Vaigant V A, Kazhikhov A V. On existence of global solutions to the two-dimensional Navier-Stokes equa-tions for a compressible viscous fluid. Siberian J Math, 1995, 36: 1283–1316
[48] Tani A. On the first initial-boundary value problem of compressible viscous fluid motion. Publ Res Inst Math Sci Kyoto Univ, 1971, 13: 193–253
[49] Vong S W, Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum II. J Differential Equations, 2003, 192(2): 475–501
[50] Xin Z P. Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density. Comm Pure Appl Math, 1998, 51: 229–240
[51] Yang T, Yao Z A, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Partial Differential Equations, 2001, 26(5/6): 965–981
[53] Yang T, Zhao H J. A vacuum problem for the one-dimensional Compressible Navier-Stokes equations with density-dependent viscosity. J Differential Equations, 2002, 184(1): 163–184
[53] Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230(2): 329–363
[54] Zhang T, Fang D Y. Existence and uniqueness results for viscous, heat-conducting 3-D fluid with vacuum. J Partial Differential Equations, 2008, 21(4): 347–376
[55] Zhang T, Fang D Y. Compressible flows with a density-dependent viscosity coefficient. SIAM J Math Anal, 2009/2010, 41(6): 2453–2488 |