[1] Carrillo J A, Goudon T. Stability and Asymptotic Analysis of a Fluid-Particle Interaction Model. Comm Partial Differential Equations, 2006, 31:1349-1379
[2] Ballew J. Mathematical topics in fuild-particle interaction[Ph D Thesis]. Maryland:University of Maryland, 2014
[3] Fang D Y, Zi R Z, Zhang T. Global classical large solutions to a 1D fluid-particle interaction model:The bubbling regime. Journal of Mathematical Physics, 2012, 53(3):177-193
[4] Ballew J, Trivisa K. Suitable weak solutions and low stratifcation singular limit for a fluid particle interaction model. Quart Appl Math, 2012, 70:469-494
[5] Ballew J, Trivisa K. Weakly dissipative solutions and weak-strong uniqueness for the Navier-StokesSmoluchowski system. Nonlinear Analysis, 2013, 91(12):1-19
[6] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Diff Eqs, 2003, 190:504-523
[7] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl, 2004, 83:243-275
[8] Ding S J, Wang C Y, Wen H Y. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. DCDS, 2011, 2B:357-371
[9] Ding S J, Lin J Y, Wang C Y, et al. Compressible hydrodynamic flow of liquid crystals in 1D. DCDS, 2012, 32(2):539-563
[10] Huang T, Wang C Y, Wen H Y. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252:2222-2265
[11] Huang T, Wang C Y, Wen H Y. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204:285-311
[12] Wen H Y, Zhu C J. Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Advances in Mathematics, 2013, 248(17):534-572
[13] Sun Y Z, Wang C, Zhang Z F. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J Math Pures Appl, 2011, 95(9):36-47
[14] Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Comm Math Phys, 1984, 94:61-66
[15] Ponce G. Remarks on a paper:‘Remarks on the breakdown of smooth solutions for the 3-D Euler equations’. Comm Math Phys, 1985, 98(3):349-353
[16] Constantin P. Nonlinear inviscid incompressible dynamics. Physica D Nonlinear Phenomena, 1995, 86:212-219
[17] Huang X D, Li J, Xin Z P. Serrin Type Criterion for the Three-Dimensional Viscous Compressible Flows. SIAM Journal on Mathematical Analysis, 2010, 43(4):1872-1886
[18] Huang X D, Li J, Xin Z P. Blow up criterion for the compressible flows with vacuum states. Comm Math Phys, 2010, 301:23-35
[19] Huang X D. Some results on blowup of solutions to the compressible Navier-Stokes equations[Ph D Thesis]. Hong Kong:Chinese University of Hong Kong, 2009
[20] Jiang S, Ou Y B. A blow-up criterion for compressible viscous heat-conductive flows. Acta Mathematica Scientia, 2010, 30(6):1851-1864 |