[1] Fujita H. On the blowing up of solutions to the Cauchy problem for ut = Δu + u1+α. J Fac Sci Univ Jokyo, Sect I, 1966, 13: 109–124
[2] Kartsatos A G, Kurta V V. On a Liouville-type theorem and the Fujita blow-up phenomenon. Proc Amer
Math Soc, 2004, 132: 807–813
[3] Levine H, Meier P. The value of the critical exponent for reaction-diffusion equations in cones. Arch
Rational Mech Anal, 1990, 109: 73–80
[4] Laptev G G. Some nonexistence results for higher-order evolution inequalities in cone-like domains. Elec-
tron Res Announc Amer Math Soc, 2001, 7: 87–93
[5] Pohozaev S I, Tesei A. Critical exponents for the absence of solutions for systems of quasilinear parabolic
inequalities. Differ Uravn, 2001, 37: 521–528
[6] Pascucci A. Semilinear equations on nilpotent Lie groups: global existence and blow-up of solutions. Le
Matematiche, 1998, LIII, Fasc. II: 345–357
[7] Hamidi A E, Laptev G G. Existence and nonexistence results for higher-order semilinear evolution in-
equalities with critical potential. J Math Anal Appl, 2005, 304: 451–463
[8] Birindelli I, et al. Liouville theorems for semilinear equations on the Heisenberg group. Ann Inset Henri
Poincar´e, 1997, 14: 295–308
[9] Birindelli I et al. Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence.
Comm In PDE, 1998, 23: 1123–1157
[10] Garofalo N, Vassilev D. Regularity near the characteristic set in the nonlinear Dirichlet problem and
conformal geometry of sub-Laplacians on Carnot groups. Math Ann, 2000, 318: 453–516
[11] Goldstein J A, Zhang Q S. On a degenerate heat equation with a singular potential. J Functional Analysis,
2001, 186: 342–359
[12] Watson G N. A treatise on the theory of Bessel functions. London, New York: Cambridge University
Press, 1966
|