[1] Bie Q Y, Wang Q R, Yao, Z A. Optimal decay rate for the compressible flow of liquid crystals in $L_p$ type critical spaces.J Math Fluid Mech, 2018, 20: 1707-1736 [2] Cheng M. On the existence of time-periodic solution to the compressible heat-conducting Navier-Stokes equations. Communications in Mathematical Research, 2019, 35: 35-56 [3] Chen Y H, Huang J C, Xu H Y, Yao Z A. Global stability of large solutions to the 3-D compressible flow of liquid crystals. Commun Math Sci, 2020, 18: 887-908 [4] De Gennes P G. The Physics of Liquid Crystals. Oxford: Oxford University Press, 1974 [5] Du H R, Li Y M, Wang C Y. Weak solutions of non-isothermal nematic liquid crystal flow in dimension three. Journal of Elliptic and Parabolic Equations, 2020, 6: 71-98 [6] Ding S J, Lin J Y, Wang C Y, Wen H Y. Compressible hydrodynamic flow of liquid crystals in 1D. Discrete Contin Dyn Syst A, 2012, 32: 539-563 [7] Ericksen J L. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 23-34 [8] Ericksen J L. Continuum theory of nematic liquid crystals. Res Mech, 1987, 21: 381-392 [9] Feireisl E, Matušu-Nečasová Š, Petzeltová H, Straškrava I. On the motion of a viscous compressible fluid driven by a time-periodic external force. Arch Rational Mech Anal, 1999, 149: 69-96 [10] Feireisl E, Frémond M, Rocca E, Schimperna G. A new approach to non-isothermal models for nematic liquid crystals. Arch Ration Mech Anal, 2012, 205: 651-672 [11] Feireisl E, Mucha P B, Novotny A, Pokorny M. Time-periodic solutions to the full Navier-Stokes-Fourier system. Arch Ration Mech Anal, 2012, 204: 745-786 [12] Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24: 243-257 [13] Fan J, Li F, Nakamura G. Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J Math Phys, 2018, 59: 031503 [14] Fan J S, Sun J Z, Tang T, Nakamura G. Global small solutions of the compressible nematic liquid crystal flow in a bounded domain. Ann Polon Math, 2020, 124: 47-59 [15] Gu W, Fan J, Zhou Y. Regularity criteria for some simplified non-isothermal models for nematic liquid crystals. Comput Math Appl, 2016, 72: 2839-2853 [16] Gao J C, Tao Q, Yao Z A. Long-time behavior of solution for the compressible nematic liquid crystal flows in $R^3$. J Differential Equations, 2016, 261: 2334-2383 [17] Guo B L, Xi X Y, Xie B Q. Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals. J Differential Equations, 2017, 262: 1413-1460 [18] Hieber M, Prüss J. Dynamics of the Ericksen-Leslie equations with general Leslie stress I: the incompressible isotropic case. Mathematische Annalen, 2017, 369: 977-996 [19] Hu X P, Wu H. Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J Math Anal, 2013, 45: 2678-2699 [20] Huang T, Wang C Y. Blow up criterion for nematic liquid crystal flows. Commun Partial Differ Equ, 2012, 37: 875-884 [21] Huang T, Wang C Y, Wen H Y. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252: 2222-2256 [22] Huang T, Wang C Y, Wen H Y. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285-311 [23] Ju N. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun Math Phys, 2004, 251: 365-376 [24] Jiang F, Song J, Wang D H. On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369-3397 [25] Jiang F, Jiang S, Wang D H. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Ration Mech Anal, 2014, 214: 403-451 [26] Jin C H. Time-periodic solutions of the compressible Navier-Stokes equations in $R^4$. Z Angew Math Phys, 2016, 5: 67-87 [27] Jin C H, Yang T. Time periodic solution to the compressible Navier-Stokes equations in a periodic domain. Acta Math Sci, 2016, 36: 1015-1029 [28] Jin, C H, Yang T. Time periodic solution for a 3-D compressible Navier-Stokes system with an external force in $R^3$. J Differential Equations, 2015, 259: 2576-2601 [29] Kagei Y, Tsuda K. Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry. J Differential Equations, 2015, 258: 399-444 [30] Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28: 265-283 [31] Leslie F M.Theory of flow phenomena in liquid crystals//Brown G. Advances in Liquid Crystals. New York: Academic Press, 1979 [32] Lin J, Lai B, Wang C. Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three. SIAM J Math Anal, 2015, 47: 2952-2983 [33] Lin F, Wang C. On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin Ann Math B, 2010, 31: 921-938 [34] Li J, Xin Z. Global weak solutions to non-isothermal nematic liquid crystal in 2D. Acta Math Sci, 2016, 36B: 973-1014 [35] Li J, Xu Z H, Zhang J W.Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows. J Math Fluid Mech, 2018, 20, 2105-2145 [36] Liu Y, Zhong X. Global well-posedness to the 3D Cauchy problem of compressible non-isothermal nematic liquid crystal flows with vacuum. Nonlinear Analysis: Real World Applications, 2021, 58: 103219 [37] Liu Y, Zhong X.Global existence of strong solutions with large oscillations and vacuum to the compressible nematic liquid crystal flows in 3D bounded domains. arXiv.2204.06227 [38] Ma H F, Ukai S, Yang T. Time periodic solutions of compressible Navier-Stokes equations. J Differential Equations, 2010, 248: 2275-2293 [39] Tsuda K. On the Existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space. Arch Ration Mech Anal, 2016, 219: 637-678 [40] Valli A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann Sc Norm Super Pisa Cl Sci, 1983, 10: 607-647 [41] Wu G C, Tan Z. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals. J Differential Equations, 2018, 264: 6603-6632 [42] Wu Z, Yin J, Wang C.Elliptic and Parabolic Equations. Hackensack: World Scientific, 2006 [43] Wang H, Zhang Y H. Optimal time-decay rates of the 3D compressible nematic liquid crystal flows with discontinuous initial data and large oscillations. Nonlinear Anal, 2022, 222: 112925 [44] Xiong J, Wang J L, Wang W W. Decay for the equations of compressible flow of nematic liquid crystals. Nonlinear Anal, 2021, 210: 112385 [45] Yang Y, Tao Q. Time periodic solution to the compressible nematic liquid crystal flows in periodic domain. Math Meth Appl Sci, 2018, 41: 28-45 [46] Zhong X. Singularity formation to the two-dimensional compressible non-isothermal nematic liquid crystal flows in a bounded domain. J Differential Equations, 2019, 267: 3797-3826 [47] Zhong X. Strong solutions to the Cauchy problem of the two-dimensional compressible non-isothermal nematic liquid crystal flows with vacuum and zero heat conduction. J Math Phys, 2020, 61: 011508 |