[1] Boussinesq J. Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal en communiquant au liqude contene dans ce cannal des vitesses sensiblement pareilles de la surface au foud. J Math Pures Appl, 1872, 217: 55-108 [2] Angulo J, Scialom M. Improved blow-up of solutions of a generalized Boussinesq equation. Comput Appl Math, 1999, 18: 333-341 [3] Bona J L, Sachs R L. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm Math Phys, 1988, 118: 15-29 [4] Farah L G. Local solutions in Sobolev spaces with negative indices for the ``good'' Boussinesq equation. Commun Part Diff Eq, 2009, 34: 52-73 [5] Hu Q Y, Zhang H W, Liu G W. Global existence and exponential growth of solution for the logarithmic Boussinesq-type equation. J Math Anal Appl, 2016, 436: 990-1001 [6] Liu Y. Instability and blow-up of solutions to a generalized Boussinesq equation. SIAM J Math Anal, 1995, 26: 1527-1546 [7] Liu Y. Decay and scattering of small solutions of a generalized Boussinesq equation. J Funct Anal, 1997, 147: 51-68 [8] Chen J, Guo B L, Shao J. Well-posedness and scattering for the generalized Boussinesq equation. SIAM J Math Anal, 2023, 55: 133-161 [9] Guenther R B, Lee J W.Partial Differential Equations of Mathematical Physics and Integral Equations. New Jersey: Prentice Hall, 1988 [10] Varlamov V. On the Cauchy problem for the damped Boussinesq equation. Differ Integral Equ, 1996, 9: 619-634 [11] Varlamov V. On spatially periodic solutions of the damped Boussinesq equation. Differ Integral Equa, 1997, 10: 1197-1211 [12] Varlamov V. Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation. Math Meth Appli Sci, 1996, 19: 639-649 [13] Xu R Z, Luo Y, Shen J, Huang S. Global existence and blow up for damped generalized Boussinesq equation. Acta Math Appl Sin-Engl, 2017, 33: 251-262 [14] Liu M, Wang W K. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Commun Pure Appl Anal, 2013, 13: 1203-1222 [15] Chen W H, Dao T A. The Cauchy problem for the nonlinear viscous Boussinesq equation in the framework. J Differ Equations, 2022, 320: 558-597 [16] Liu G W, Wang W K. Inviscid limit for the damped Boussinesq equation. J Differ Equations, 2019, 267: 5521-5542 [17] Liu G W, Wang W K. Decay estimates for a dissipative-dispersive linear semigroup and application to the viscous Boussinesq equation. J Funct Anal, 2020, 278: 108413 [18] Su X, Wang S B. Optimal decay rates and small global solutions to the dissipative Boussinesq equation. Math Method Appl Sci, 2020, 43: 174-198 [19] Wang Y. Asymptotic decay estimate of solutions to the generalized damped Bq equation. J Inequal Appl2013, 2013: Art 323 [20] Christov C I, Velarde M G. Evolution and interactions of solitary wave (solitons) in nonlinear dissipative systems. Phys Scripta, 1994, T55: 101-106 [21] Ding H, Zhou J. Well-posedness of solutions for the dissipative Boussinesq equation with logarithmic nonlinearity. Nonlinear Anal-RWA, 2022, 67: Art 103587 [22] Wang S B, Su X. Global existence and nonexistence of the initial-boundary value problem for the dissipative Boussinesq equation. Nonlinear Anal, 2016, 134: 164-188 [23] Wang S B, Su X. The Cauchy problem for the dissipative Boussinesq equation. Nonlinear Anal-RWA, 2019, 45: 116-141 [24] Ginibre J, Velo G. The global Caucby problem for the non-linear Klein-Gordon equation. Math Z, 1985, 189: 487-505 [25] Wang S B, Xu G X. The Cauchy problem for the Rosenau equation. Nonlinear Anal, 2009, 71: 456-466 [26] Xu R Z, Liu Y C. Asymptotic behavior of solutions for initial-boumdary value problems for strongly damped nonlinear wave equations. Nonlinear Anal, 2008, 69: 2492-2495 [27] Xu R Z, Liu Y C. Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations. J Math Anal Appl, 2009, 359: 739-751 [28] Chen H, Liu G W. Global existence, uniform decay and exponential growth for a class of semi-linear wave equation with strong damping. Acta Math Sci, 2013, 33B: 41-58 [29] Sattinger D H. On global solution of nonlinear hyperbolic equations. Arch Rat Mech Anal, 1968, 30: 148-172 [30] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. ISR J Math, 1975, 22: 273-303 [31] Lian W, Rădulescu V D, Xu R Z, et al. Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations. Adv Calc Var, 2021, 14: 589-611 [32] Adams R A. Sobolev Spaces.New York: Academic Press, 1975 [33] Li Tatsien, Zhou Y. Nonlinear Wave Equations.Berlin: Springer-Verlag, 2017 [34] Koch H, Lasiecka I. Hadamard wellposedness of weak solutions in nonlinear dynamic elasticity-full Von Karman systems// Lorenzi A, Ruf B, eds. Evolution Equations, Semigroups and Functional Analysis 50. Switerland: Birkhäuser Verlag Basel, 2002: 197-211 [35] Levine H A. Some additional remarks on the nonexistence of global solutions to nonlinear equations. SIAM J Math Anal, 1974, 5: 138-146 [36] Levine H A. Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+f(u)$. Trans Amer Math Soc, 1974, 192: 1-21 |