[1] Levermore C.Chapman-enskog approach to flux-limited diffusion theory[R]. California Univ, 1979 [2] Levermore C, Pomraning G. A flux-limited diffusion theory. The Astrophysical Journal, 1981, 248: 321-334 [3] Levermore C. Relating eddington factors to flux limiters. Journal of Quantitative Spectroscopy and Radiative Transfer, 1984, 31(2): 149-160 [4] Rosenau P. Tempered diffusion: A transport process with propagating fronts and inertial delay. Physical Review A, 1992, 46(12): R7371 [5] Brenier Y. Optimal transportation and applications. Extended Monge-Kantorovich Theory, 2003, 1813: 91-121 [6] Andreu F, Caselles V, Mazón J M, Moll S. Finite propagation speed for limited flux diffusion equations. Archive for Rational Mechanics and Analysis, 2006, 182(2): 269-297 [7] Andreu F, Caselles V, Mazón J M. A strongly degenerate quasilinear elliptic equation. Nonlinear Analysis: Theory, Methods & Applications, 2005, 61(4): 637-669 [8] Andreu F, Caselles V, Mazón J M. The cauchy problem for a strongly egenerate quasilinear equation. Journal of the European Mathematical Society, 2005, 7(3): 361-393 [9] Andreu F, Caselles V, Mazón J M, Moll S. The dirichlet problem associated to the relativistic heat equation. Mathematische Annalen, 2010, 347(1): 135-199 [10] Caselles V. On the entropy conditions for some flux limited diffusion equations. Journal of Differential Equations, 2011, 250(8): 3311-3348 [11] Calvo J, Campos J, Caselles V, Sánchez O, Soler J. Pattern formation in a flux limited reaction-diffusion equation of porous media type. Inventiones Mathematicae, 2016, 206(1): 57-108 [12] Andreu F, Caselles V, Mazón J. Some regularity results on the 'relativistic' heat equation. Journal of Differential Equations, 2008, 245(12): 3639-3663 [13] Andreu F, Caselles V, Mazón J M, Soler J, Verbeni M. Radially symmetric solutions of a tempered diffusion equation. a porous media, flux-limited case. SIAM Journal on Mathematical Analysis, 2012, 44(2): 1019-1049 [14] Carrillo J A, Caselles V, Moll S. On the relativistic heat equation in one space dimension. Proceedings of the London Mathematical Society, 2013, 107(6): 1395-1423 [15] Calvo J, Caselles V. Local-in-time regularity results for some flux-limited diffusion equations of porous media type. Nonlinear Analysis: Theory, Methods & Applications, 2013, 93: 236-272 [16] Calvo J, Campos J, Caselles V, Sánchez ó, Soler J. Qualitative behaviour for flux-saturated mechanisms: travelling waves, waiting time and smoothing effects. Journal of the European Mathematical Society, 2017, 19(2): 441-472 [17] Jenkins H, Serrin J. The Dirichlet problem for the minimal surface equation in higher dimensions. Journal für die Reine und Angewandte Mathematik, 1968, 229: 170-187 [18] Gilbarg D, Trudinger N S.Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 2015 [19] Poisson S. Note sur la surface dont l'aire est un minimum entre des limites données. Journal für die Reine und Angewandte Mathematik, 1832, 9: 361-362 [20] Korn A.Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abweichen, Vol 1909. Königl Akademie der Wissenschaften, 1909 [21] Williams G H. The dirichlet problem for the minimal surface equation with lipschitz continuous boundary data. J Reine Ange Math, 1984, 354: 123-140 [22] Schulz F, Williams G. Barriers and existence results for a class of equations of mean curvature type. Analysis, 1987, 7(3/4): 359-374 [23] Lau C P. Quasilinear elliptic equations with small boundary data. Manuscripta Mathematica, 1985, 53(1): 77-99 [24] Hayasida K, Nakatani M. On the dirichlet problem of prescribed mean curvature equations without H-convexity condition. Nagoya Mathematical Journal, 2000, 157: 177-209 [25] Tsukamoto Y. The dirichlet problem for a prescribed mean curvature equation. Hiroshima Mathematical Journal, 2020, 50(3): 325-337 [26] Liang Z, Yang Y. Radial convex solutions of a singular dirichlet problem with the mean curvature operator in minkowski space. Acta Mathematica Scientia, 2019, 39B(2): 395-402 |