[1] Asano K. On local solutions of the initial value problem for the Vlasov-Maxwell equation. Comm Math Phys, 1986, 106(4): 551-568 [2] Asano K, Ukai S.On the Vlasov-Poisson limit of the Vlasov-Maxwell equation//Patterns and Waves. Stud Math Appl 18. Amsterdam: North-Holland, 1986: 369-383 [3] Bardos C, Degond P. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann Inst H Poincaré Anal Non Linéaire, 1985, 2(2): 101-118 [4] Bauer S, Kunze M. The Darwin approximation of the relativistic Vlasov-Maxwell system. Ann Henri Poincaré, 2005, 6(2): 283-308 [5] Benachour S, Filbet F, Laurencot P, Sonnendrücker E. Global existence for the Vlasov-Darwin system in $R^{3}$ for small initial data. Math Methods Appl Sci, 2003, 26(4): 297-319 [6] Cooper J. Boundary value problems for the Vlasov-Maxwell equation in one dimension. J Math Anal Appl, 1980, 75(2): 306-329 [7] Degond P. Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. Math Methods Appl Sci, 1986, 8(1): 533-558 [8] Degond P, Raviart P A. An analysis of the Darwin model of approximation to Maxwell's equation. Forum Math, 1992, 4(1): 13-44 [9] DiPerna R J, Lions P L. Global weak solutions of Vlasov-Maxwell systems. Comm Pure Appl Math, 1989, 42(6): 729-757 [10] Duan X L. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15(1): 119-146 [11] Evans Lawrence C. Partial Differential Dquations. Providence: American Mathematical Society, 1998 [12] Glassey R T, Strauss W A. Singularity formation in a collisionless plasma could occur only at high velocities. Arch Rational Mech Anal, 1986, 92(1): 59-90 [13] Glassey R T, Strauss W A. Absence of shocks in an initially dilute collisionless plasma. Comm Math Phys, 1987, 113(2): 191-208 [14] Glassey R T, Schaeffer J. Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data. Comm Math Phys, 1988, 119(3): 353-384 [15] Glassey R T, Schaeffer J. On the "one and one-half dimensional" relativistic Vlasov-Maxwell system. Math Methods Appl Sci, 1990, 13(2): 169-179 [16] Glassey R T.The Cauchy Problem in Kinetic Theory. Philadelphia: SIAM, 1996 [17] Glassey R T, Schaeffer J. The "two and one-half dimensional" relativistic Vlasov-Maxwell system. Comm Math Phys, 1997, 185(2): 257-284 [18] Glassey R T, Schaeffer J. The relativistic Vlasov-Maxwell system in two space dimensions: Part I. Arch Rational Mech Anal, 1998, 141(4): 331-354 [19] Glassey R T, Schaeffer J. The relativistic Vlasov-Maxwell system in two space dimensions: Part II. Arch Rational Mech Anal, 1998, 141(4): 355-374 [20] Glassey R T, Pankavich S, Schaeffer J. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinet Relat Models, 2016, 9(3): 455-467 [21] Klimas A J, Cooper J. Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma. Phys Fluids, 1983, 26(2): 478-479 [22] Li X T, Zhang X W. On global classical solutions of the three dimensional relativistic Vlasov-Darwin system. J Math Phys, 2016, 57(8): 081508 [23] Li X T, Sun J. On classical solutions and the classical limit of the Vlasov-Darwin system. Bull Korean Math Soc, 2018 55(5): 1599-1619 [24] Ma Y X, Zhang X W. Asymptotic growth bounds for the Vlasov-Poisson system with radiation damping. Acta Math Sci, 2022, 42B(1): 91-104 [25] Nguyen C, Pankavich S. A one-dimensional kinetic model of plasma dynamics with a transport field. Evol Equ Control Theory, 2014, 3(4): 681-698 [26] Pallard C. The initial value problem for the relativistic Vlasov-Darwin system. Int Math Res Not, 2006, 2006(9): 57191 [27] Rein G. Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics. Comm Math Phys, 1990, 135: 41-78 [28] Rein G.Collisionless kinetic equation from astrophysics-the Vlasov-Poisson system//Handbook of Differential Equations: Evolutionary Equations 3. Amsterdam: Elsevier, 2007: 385-476 [29] Seehafer M. Global classical solutions of the Vlasov-Darwin system for small initial data. Commun Math Sci, 2008, 6(3): 749-764 [30] Smulevici J. Small data solutions of the Vlasov-Poisson system and the vector field method. Ann PDE, 2016, 2(2): Art 11 [31] Sospedra-Alfonso R, Agueh M, Illner R. Global classical solutions of the relativistic Vlasov-Darwin system with small Cauchy data: the generalized variables approach. Arch Rational Mech Anal, 2012, 205(3): 827-869 [32] Sospedra-Alfonso R, Agueh M. Uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system. Acta Appl Math, 2013, 124: 207-227 [33] Wollman S. An existence and uniqueness theorem for the Vlasov-Maxwell system. Comm Pure Appl Math, 1984, 37(4): 457-462 |