[1] Alves C O, Souto M A. Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z Angew Math Phys, 2014, 65(6): 1153-1166 [2] Alves C O, Souto M A S, Soares S H M. Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2011, 377(2): 584-592 [3] Alves C O, Souto M A S, Soares S H M. A sign-changing solution for the Schrödinger-Poisson equation in $\mathbb{R}^3$. Rocky Mountain J Math, 2017, 47(1): 1-25 [4] Ambrosetti A. On Schrödinger-Poisson systems. Milan J Math, 2008, 76: 257-274 [5] Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger-Poisson problem. Commun Contemp Math, 2008, 10(3): 391-404 [6] Azzollini A, d'Avenia P, Pomponio A. On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27(2): 779-791 [7] Bartsch T, Willem M. Infinitely many radial solutions of a semilinear elliptic problem on $\mathbb{R}^N$. Arch Ration Mech Anal, 1993, 124(3): 261-276 [8] Bellazzini J, Siciliano G. Stable standing waves for a class of nonlinear Schrödinger-Poisson equations. Z Angew Math Phys, 2011, 62(2): 267-280 [9] Benguria R, Brézis H, Lieb E. The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Commun Math Phys, 1981, 79(2): 167-180 [10] Cao D, Zhu X. On the existence and nodal character of solutions of semilinear elliptic equations. Acta Math Sci, 1988, 8B(3): 345-359 [11] Catto I, Lions P. Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Commun Partial Differ Equ, 1993, 18(7/8): 1149-1159 [12] D'Aprile T, Wei J. Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem. Calc Var Partial Differ Equ, 2006, 25(1): 105-137 [13] He X, Zou W. Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J Math Phys, 2012, 53(2): 023702 [14] Ianni I. Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol Methods Nonlinear Anal, 2013, 41(2): 365-385 [15] Jiang Y, Zhou H. Bound states for a stationary nonlinear Schrödinger-Poisson system with sign-changing potential in $\mathbb{R}^3$. Acta Math Sci, 2009, 29B(4): 1095-1104 [16] Kim S, Seok J. On nodal solutions of the nonlinear Schrödinger-Poisson equations. Commun Contemp Math, 2012, 14(6): 1250041 [17] Li G, Peng S, Yan S. Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun Contemp Math, 2010, 12(6): 1069-1092 [18] Lieb E. Thomas-Fermi and related theories of atoms and molecules. Rev Mod Phys, 1981, 53(4): 263-301 [19] Lions P. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1(2): 109-145 [20] Lions P. Solutions of Hartree-Fock equations for Coulomb systems. Commun Math Phys, 1987, 109(1): 33-97 [21] Liu X, Liu J, Wang Z. Ground states for quasilinear Schrödinger equations with critical growth. Calc Var Partial Differ Equ, 2013, 46(3/4): 641-669 [22] Liu Z, Wang Z, Zhang J. Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann Mat Pura Appl, 2016, 195(3): 775-794 [23] Markowich P, Ringhofer C, Schmeiser C. Semiconductor Equations.Vienna: Springer-Verlag, 1990 [24] Mauser N J. The Schrödinger-Poisson-$X_\alpha$ equation. Appl Math Lett, 2001, 14(6): 759-763 [25] Miranda C. Un'osservazione su un teorema di Brouwer. Bol Un Mat Ital, 1940, 3: 5-7 [26] Ruiz D. The Schrödinger-Poissom equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237(2): 655-674 [27] Ruiz D. On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch Rational Mech Anal, 2010, 198(1): 349-368 [28] S$\acute{a}$nchez O, Soler J. Long-time dynamics of the Schrödinger-Poisson-Slater system. J Statistical Physics, 2004, 114(1/2): 179-204 [29] Shuai W, Wang Q. Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$. Z Angew Math Phys, 2015, 66(6): 3267-3282 [30] Wang J, Tian L, Xu J, Zhang F. Existence and concentration of positive solutions for semilinear Schröinger-Poisson systems in $\mathbb{R}^3$. Calc Var Partial Differ Equ, 2013, 48(1/2): 243-273 [31] Wang J, Tian L, Xu J, Zhang F. Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth. Z Angew Math Phys, 2015, 66(5): 2441-2471 [32] Wang Z, Zhou H. Positive solution for a nonlinear stationary Schrödinger Poisson system in $\mathbb{R}^3$. Discrete Contin Dyn Syst, 2007, 18(4): 809-816 [33] Wang Z, Zhou H. Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$. Calc Var Partial Differ Equ, 2015, 52(3/4): 927-943 |