[1] Antonelli P, Spirito S.Global existence of finite energy weak solutions of quantum Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225: 1161-1199 [2] Bresch D, Desjardins B, Lin C K.On some compressible fluid models: Korteweg, lubrication and shallow water system. Comm Partial Differential Equations, 2003, 28: 843-868 [3] Cai H, Tan Z, Xu Q.Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic and Related Models, 2015, 8(1): 29-51 [4] Cai H, Tan Z, Xu Q.Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete Contin Dyn Syst, 2016, 36(2): 611-629 [5] Chen Z Z, Zhao H J.Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system. J Math Pures Appl, 2014, 101: 330-371 [6] Dunn J E, Serrin J.On the thermomechanics of interstitial working. Arch Rational Mech Anal, 1985, 88(2): 95-133 [7] Gao J, Zou Y, Yao Z.Long-time behavior of solution for the compressible Navier-Stokes-Korteweg equations in R3. Applied Math Letter, 2015, 48: 30-35 [8] Grisvard P.Elliptic Problems in Nonsmooth Domains. Philadelphia, PA: SIAM, 2011 [9] Haspot B.Existence of strong solutions for nonisothermal Korteweg system. Ann Math Blaise Pascal, 2009, 16: 431-481 [10] Haspot B.Existence of global strong solution for Korteweg system with large infinite energy initial data. J Math Anal Appl, 2016, 438: 395-443 [11] Hattori H, Li D.The existence of global solutions to a fluid dynamic model for materials for Korteweg type. J Partial Differential Equations, 1996, 9(4): 323-342 [12] Hattori H, Li D.Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198(1): 84-97 [13] Hong H H, Wang T.Stability of stationary solutions to the inflow problem foe full compressible Navier- Stokes equations with a large initial perturbation. SIAM J Math Anal, 2017, 49(3): 2138-2166 [14] Hong H H.Strong solutions for the compressible barotropic fluid model of Korteweg type in the bounded domain. Z Angew Math Phys, 2020, 71: 85 [15] Hou X F, Peng H Y, Zhu C J.Global classical well-posedness for a 3D compressible isothermal Korteweg- type model with large oscillations. Anal Appl (Singap), 2018, 16: 55-84 [16] Hou X F, Peng H Y, Zhu C J.Global well-posedness for the 3D non-isothermal compressible fluid model of Korteweg type. Nonlinear Analysis: RWA, 2018, 43: 18-53 [17] Hsieh D Y, Wang X P.Phase transition in van der Waals fluids. SIAM J Appl Math, 1997, 57(4): 871-892 [18] Huang F M, Hong H H, Shi X.Existence of smooth solutions for the compressible barotropic Navier-Stokes- Korteweg system without increasing pressure law. Math Meth Appl Sci, 2020, 43: 5073-5096 [19] Korteweg D J.Sur la forme que prennent les équations du mouvement des fluides si Ìon tient compte des forces capillaires par des variations de densité. Arch Néer Sci Exactes Sér II, 1901, 6: 1-24 [20] Kotschote M.Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non- isothermal fluid. J Math Fluid Mech, 2010, 12: 473-484 [21] Kotschote M.Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ Math J, 2014, 63: 21-51 [22] Li Y P.Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force. J Math Anal Appl, 2012, 388: 1218-1232 [23] Nirenberg L.On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13: 115-162 [24] Tan T, Gao H J.On the compressible Navier-Stokes-Korteweg equations. Discrete Contin Dyn Syst Series B, 2016, 21(8): 2745-2766 [25] Tan Z, Wang H, Xu J.Global existence and optimal L2 decay rate for the strong solutions to the com- pressible fluid models of Korteweg type. J Math Anal Appl, 2012, 390: 181-187 [26] Tan Z, Zhang R.Optimal decay rates of the compressible fluid models of Korteweg type. Z Angew Math Phys, 2014, 65: 279-300 [27] Tang T, Zhang Z.A remark on the global existence of weak solutions to the compressible quantum Navier- Stokes equations. Nonlinear Analysis: RWA, 2019, 45: 255-261 [28] Tsuda K.Existence and stability of time periodic solution to the compressible Navier-Stokes-Korteweg system on R3. J Math Fluid Mech, 2016, 18: 157-185 [29] Wang Y J, Tan Z.Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl, 2011, 379: 256-271 [30] Yang J, Li Y.Global existence for weak solution for quantum Navier-Stokes-Poisson equations. Journal of Math Physics, 2017, 58: 071507 [31] Yang J, Wang Z, Ding F.Existence of global weak solutions for a 3D Navier-Stokes-Poisson-Korteweg equations. Applicable Analysis, 2018, 97: 528-537 |