数学物理学报(英文版) ›› 2021, Vol. 41 ›› Issue (5): 1547-1568.doi: 10.1007/s10473-021-0509-2

• 论文 • 上一篇    下一篇

A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS

王朋燕, 钮鹏程   

  1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China
  • 收稿日期:2020-01-21 修回日期:2021-05-07 出版日期:2021-10-25 发布日期:2021-10-21
  • 通讯作者: Pengcheng NIU E-mail:pengchengniu@nwpu.edu.cn
  • 作者简介:Pengyan WANG,E-mail:wangpy119@126.com;
  • 基金资助:
    The research was supported by NSFC (11701452; 11771354).

A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS

Pengyan WANG, Pengcheng NIU   

  1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China
  • Received:2020-01-21 Revised:2021-05-07 Online:2021-10-25 Published:2021-10-21
  • Contact: Pengcheng NIU E-mail:pengchengniu@nwpu.edu.cn
  • Supported by:
    The research was supported by NSFC (11701452; 11771354).

摘要: In this paper, we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:$$\left\{\begin{array}{lll} (-\Delta)^{\frac{\alpha}{2}}_{a_1} u_1(x)=u_1^{q_{11}}(x)+u_2^{q_{12}}(x)+ h_1(x,u_1(x),u_2(x),\nabla u_1(x),\nabla u_2(x)),~~~x\in \Omega,\\ (-\Delta)^{\frac{\beta}{2}}_{a_2} u_2(x)=u_1^{q_{21}}(x)+u_2^{q_{22} }(x)+h_2(x,u_1(x),u_2(x),\nabla u_1(x),\nabla u_2(x)),~~~x\in \Omega,\\ u_1(x)=0,~u_2(x)=0,~~~x\in \mathbb{R}^n \backslash \Omega. \end{array}\right.$$ Here $(-\Delta)^{\frac{\alpha}{2}}_{a_1}$ and $(-\Delta)^{\frac{\beta}{2}}_{a_2}$ denote weighted fractional Laplacians and $\Omega \subset \mathbb{R}^n$ is a $C^2$ bounded domain. It is shown that under some assumptions on $h_i(i=1,2)$, the problem admits at least one positive solution $(u_1(x),u_2(x))$. We first obtain the {a priori} bounds of solutions to the system by using the direct blow-up method of Chen, Li and Li. Then the proof of existence is based on a topological degree theory.

关键词: weighted fractional system, gradient term, existence, a priori bounds

Abstract: In this paper, we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:$$\left\{\begin{array}{lll} (-\Delta)^{\frac{\alpha}{2}}_{a_1} u_1(x)=u_1^{q_{11}}(x)+u_2^{q_{12}}(x)+ h_1(x,u_1(x),u_2(x),\nabla u_1(x),\nabla u_2(x)),~~~x\in \Omega,\\ (-\Delta)^{\frac{\beta}{2}}_{a_2} u_2(x)=u_1^{q_{21}}(x)+u_2^{q_{22} }(x)+h_2(x,u_1(x),u_2(x),\nabla u_1(x),\nabla u_2(x)),~~~x\in \Omega,\\ u_1(x)=0,~u_2(x)=0,~~~x\in \mathbb{R}^n \backslash \Omega. \end{array}\right.$$ Here $(-\Delta)^{\frac{\alpha}{2}}_{a_1}$ and $(-\Delta)^{\frac{\beta}{2}}_{a_2}$ denote weighted fractional Laplacians and $\Omega \subset \mathbb{R}^n$ is a $C^2$ bounded domain. It is shown that under some assumptions on $h_i(i=1,2)$, the problem admits at least one positive solution $(u_1(x),u_2(x))$. We first obtain the {a priori} bounds of solutions to the system by using the direct blow-up method of Chen, Li and Li. Then the proof of existence is based on a topological degree theory.

Key words: weighted fractional system, gradient term, existence, a priori bounds

中图分类号: 

  • 35J61