[1] Angell T S, Kirsch A. The conductive boundary condition for Maxwell's equation. SIAM J Appl Math, 1992, 52(6):1597-1610 [2] Angell T S, Kleinman R E, Hettlich F. The resistive and conductive problems for the exterior Helmholtz Equation. SIAM J Appl Math, 1990, 50(6):1607-1622 [3] Bondarenko O, Harris I, Kleefeld A. The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary. Appl Anal, 2017, 96(1):2-22 [4] Bondarenko O, Liu X D. The factorization method for inverse obstacle scattering with conductive boundary condition. Inverse Probl, 2013, 29(9):095021 [5] Cakoni F, Colton D. A Qualitative Approach to Inverse Scattering Theory. Berlin:Springer, 2014 [6] Cakoni F, Colton D, Haddar H. Inverse Scattering Theory and Transmission Eigenvalues. Inverse Scattering Theory, 2016 [7] Cakoni F, Colton D, Haddar H. The linear sampling method for anisotropic media. J Comput Appl Math, 2002, 146(2):285-299 [8] Colton D, Kress R. Integral Equation Methods in Scattering Theory. New York:Wiley, 1983 [9] Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. 4th ed. Springer Nature Switzerland AG, 2019 [10] Colton D, Kress R. Using fundamental solutions in inverse scattering. Inverse Probl, 2006, 22(3):49-66 [11] Colton D, Kress R, Monk P. Inverse scattering from an orthotropic medium. J Comput Appl Math, 1997, 81(2):269-298 [12] Gerlach T, Kress R. Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Probl, 1996, 12(5):619-625 [13] Gintides D. Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality. Inverse Probl, 2005, 21(4):1195-1205 [14] Hähner P. On the uniqueness of the shape of a penetrable, anisotropic obstacle. J Comput Appl Math, 2000, 116(1):167-180 [15] Harris I, Kleefeld A. The inverse scattering problem for a conductive boundary condition and transmission eigenvalues. Appl Anal, 2020, 99(3):508-529 [16] Hettlich F. On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Probl, 1994, 10(1):129-144 [17] Isakov V. On uniqueness in the inverse transmission scattering problem. Commun Part Diff Equ, 1990, 15(11):1565-1587 [18] Kirsch A, Kress R. Uniqueness in inverse obstacle scattering. Inverse Probl, 1993, 9(2):285-299 [19] Kress R. Uniqueness and numerical methods in inverse obstacle scattering. J Phys Conf Ser, 2007, 73(1):012003 [20] Lax P D, Phillips R S. Scattoing Theory. New York Academic, 1967 [21] Liu X D, Zhang B. Direct and inverse obstacle scattering problems in a piecewise homogeneous medium. SIAM J Appl Math, 2010, 70(8):3105-3120 [22] Liu X D, Zhang B. Inverse scattering by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium. Acta Mathematica Scientia, 2012, 32B(4):1281-1297 [23] Liu X D, Zhang B, Hu G H. Uniqueness in the inverse scattering problem in a piecewise homogeneous medium. Inverse Probl, 2010, 26(1):015002 [24] Mitrea D, Mitrea M. Uniqueness for inverse conductivity and transmission problems in the class of Lipschitz domains. Commun Part Diff Equ, 1998, 23(7):1419-1448 [25] Piana M. On uniqueness for anisotropic inhomogeneous inverse scattering problems. Inverse Probl, 1998, 14(6):1565-1579 [26] Potthast R. A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J Appl Math, 1998, 61(2):119-140 [27] Potthast R. On the convergence of a new Newton-type method in inverse scattering. Inverse Probl, 2001, 17(5):1419-1434 [28] Potthast R. Point sources and multipoles in inverse scattering theory. Chapman and Hall/CRC, 2001 [29] Qu F L, Yang J Q. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Probl Imag, 2018, 12(2):281-291 [30] Qu F L, Yang J Q, Zhang B. Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements. Inverse Probl, 2018, 34(1):015002 [31] Ramm A G. New method for proving uniqueness theorems for obstacle inverse scattering problems. Appl Math Lett, 1993, 6(6):19-21 [32] Stefanov P, Uhlmann G. Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. P Amer Math Soc, 2004, 132(5):1351-1354 [33] Valdivia N. Uniqueness in inverse obstacle scattering with conductive boundary conditions. Appl Anal, 2004, 83(8):825-851 [34] Yang J Q, Zhang B, Zhang H W. Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles with embedded objects. J Diff Equ, 2018, 265(12):6352-6383 |