[1] Bouleau N, Léepingle D. Numerical Methods for Stochastic Processes. John Wiley & Sons, Inc, 1994
[2] Chetrite R, Gaw\c edzki K. Eulerian and Lagrangian pictures of non-equilibrium diffusions. J Stat Phys, 2009, 137(5/6): 890--916
[3] Cipriano F, Cruzeiro A B. Flows associated with irregular Rd-vector fields. J Differ Equ, 2005, 219(1): 183--201
[4] Danchin R. Uniform estimates for transport-diffusion equations. J Hyperbolic Differ Equ, 2007, 4(1): 1--17
[5] Deck Th, Potthoff J. On a class of stochastic partial differential equations related to turbulent transport. Probab Theory Related Fields, 1998, 111(1): 101--122
[6] Weinan E, Vanden Eijnden E. Generalized flows, intrinsic stochasticity, and turbulent transport. Proc Natl Acad Sci USA, 2000, 97(15): 8200--8205
[7] Fernique X. Regularité des trajectoires des fonctions aléatoires gaussiennes//École dÉté de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Math 480. Berlin: Springer-Verlag, 1975: 1--96
[8] Gaw\c edzki K, Vergassola M. Phase transition in the passive scalar advection. Phys D, 2000, 138(1/2): 63--90
[9] Hu Y. It\^o-Wiener chaos expansion with exact residual and correlation, variance inequalities. J Theoret Probab, 1997, 10(4): 835--848
[10] Hu Y. A class of SPDE driven by fractional white noise//Stochastic Processes, Physics and Geometry: New Interplays, II (Leipzig, 1999).
CMS Conf Proc, 29. Providence, RI: Amer Math Soc, 2000: 317--325
[11 }Hu Y, Meyer P A. Chaos de Wiener et intgrale de Feynman. Séminaire de Probabilité, XXII, 51--71. Lecture Notes in Math, 1321. Springer, 1988
[12] Hu Y, Lu F, Nualart D. Feynman-Kac Formula for the Heat Equation Driven by fractional Noise with Hurst parameter H<1/2. Preprint, 2010
[13] Hu Y, Yan J A. Wick calculus for nonlinear Gaussian functionals. Acta Math Appl Sin Engl Ser, 2009, 25(3): 399--414
[14] Lototskii S V, Rozovskii B L. The passive scalar equation in a turbulent incompressible Gaussian velocity field. Russian Math Surveys, 2004, 59(2): 297--312
[15] O ksendal B. Stochastic Differential Equations. An Introduction with Applications. Sixth ed. Springer, 2003
[16] Potthoff J, Vage G, Watanabe H. Generalized solutions of linear parabolic stochastic partial differential equations. Appl Math Optim, 1998, 38(1): 95--107
[17] Üst\"uel A S, Zakai M. Transformation of Measure on Wiener Space. Springer, 2000
[18] Veretennikov A Ju, Krylov N V. On explicit formulae for solutions of stochastic equations. (Russian) Mat Sb (N S), 1976, 29(2): 239--256
|