[1] Arnold A. Random Dynamical Systems. Berlin: Springer, 1998
[2] Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel:Existence and uniqueness of solutions. Nonl Anal, 2001, 44: 281--309
[3] Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel:Existence of a maximal compact attractor. Nonl Anal, 2001, 43: 743--766
[4] Bates P W, Lu K N, Wang B X. Random attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential equations, 2009, 246: 845--869
{
[5] Crauel H, Flandoli F. Attractors for random dynamical systems. Probability and Related Fields, 1994, 100: 365--393
[6] Crauel H. Random point attractors versus random set attractors. J London Math Soc, 2002, 63: 413--427
[7] Crauel H, Flandoli F. Hausdorff dimension of invariant sets for random dynamical systems. J Dyn Diff Equations, 1998, 10: 449--474
[8] Crauel H A, Debussche F. Flandoli, Random Attractors. J Dyn Diff Equations, 1997, 9: 307--341
[9] Caraballo T, Lu K N. Attractors of stochastic lattice dynamical systems with a multiplicative noise. Front Math China, 2008, 3: 317--335
[10] Debussche A. On the finite dimensionality of random attractors. Stochastic Anal Appl, 1997, 15: 473--492
[11] Debussche A. Hausdorff dimension of a random invariant set. J Math Pure Appl, 1998, 77: 967--988
[12] Dong B Q, Li Y S. Large time behavior to the system of incompressible non-Newtonian fluids in R2. J Math Anal Appl, 2004, 298: 667--676
[13] Dong B Q, Chen Z M. Time decay rates of non-Newtonian flows in R2. J Math Anal Appl, 2006, 324: 820--833
[14] Guo B L, Zhu P C. Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids. J Differential Equations, 2002, 178: 281--297
[15] Guo B L, Lin G G, Shang Y D. Dynamics of Non-Newtonian fluid. Beijing: National Defence Industry Press, 2006
[16] Ladyzhenskaya O. New equations for the description of the viscous incompressible fluids and solvability in large of the boundary value problems for them//Boundary Value Problems of Mathematical Physics. AMS, Providence, RI, 1970
[17] Màlek J, Ne\v{c}as J, Rokyta M, R\.{u}\v{z}i\v{c}k M. Weak and Measure-valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996
[18] Pokorn\'{y} M. Cauchy problem for the non-Newtonian viscous incompressible fluids. Appl Math, 1996, 41: 169--201
[19] Schmalfuss B. The stochastic attractor of the stochastic Lorenz system. Z Angew Math Phy, 1997, 48: 951--975
[20] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997
[21] Zhao C D, Li Y S. H2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains. Nonl Anal, 2004, 7: 1091--1103
[22] Zhao C D, Zhou S F. L2-compact uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J Math Phy, 2007, 48: 1--12
[23] Zhao C D, Zhou S F. Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. J Differential Equations, 2007, 238: 394--425
[24] Zhao C D, Zhou S F. Pullback trajectory attractors for evolution equations and application to 3D incompressible non-Newtonian fluid.
Nonlinearity, 2008, 21: 1691--1717
[25] Zhao C D, Zhou S F. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems
and applications. J Math Anal Appl, 2009, 354: 78--95
[26] Zhao C D, Li Y S, Zhou S F. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J Differential Equations, 2009, 247: 2331--2363
[27] Zhao C D, Zhou S F, Li Y S. Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays. Quar Appl Math, 2009, 67: 503--540
|