Processing math: 52%

数学物理学报, 2022, 42(4): 1003-1017 doi:

论文

*-代数上ξ-*-Jordan-型非线性导子

张芳娟,1, 朱新宏2

1 西安邮电大学理学院 西安 710121

2 西安现代控制技术研究所 西安 710065

Nonlinear ξ-*-Jordan-Type Derivations on *-Algebras

Zhang Fangjuan,1, Zhu Xinhong2

1 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121

2 Xi'an Modern Control Technology Institute, Xi'an 710065

通讯作者: 张芳娟, E-mail: zhfj888@xupt.edu.cn; zhfj888@126.com

收稿日期: 2021-09-10  

基金资助: 国家自然科学基金.  11601420
和陕西省自然科学基础研究计划资助基金.  2018JM1053

Received: 2021-09-10  

Fund supported: the NSFC.  11601420
the Natural Science Basic Research Plan in Shaanxi Province.  2018JM1053

Abstract

Let A be a unital -algebra with the unit I and let ξC{0}. Assume that A contains a nontrivial projection P which satisfies XAP=0 implies X=0 and XA(IP)=0 implies X=0. Then ϕ is a nonlinear ξ--Jordan-type derivations on A if and only if ϕ is an additive -derivation and ϕ(ξA)=ξϕ(A) for all AA.

Keywords: ξ-*-Jordan-type derivation ; *-Algebra ; *-Derivation

PDF (293KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张芳娟, 朱新宏. *-代数上ξ-*-Jordan-型非线性导子. 数学物理学报[J], 2022, 42(4): 1003-1017 doi:

Zhang Fangjuan, Zhu Xinhong. Nonlinear ξ-*-Jordan-Type Derivations on *-Algebras. Acta Mathematica Scientia[J], 2022, 42(4): 1003-1017 doi:

1 引言

A是复数域C上的- 代数, ξ是非零复数, A,BAξ-Jordan - 积定义为AB=AB+ξBA,1-Jordan - 积通常记为AB=AB+BA,(1)-Jordan - 积(Lie 1-- 积)通常记为[A,B]=ABBA.近年来, 相关的研究吸引了许多作者的注意[1-19]. P. Šemrl [1]在量子函数中首先引入并研究了(1)-Jordan - 积. 霍等[2]刻画了von Neumann代数上保持三重ξ-Jordan - 积的非线性映射.

ϕ:AA是一个映射(不必可加或线性). 如果对任意的A,BA,ϕ(AB)=ϕ(A)B+Aϕ(B)ϕ(A)=ϕ(A),那么称ϕ- 导子. 设n2为固定的正整数, 如果对所有A1,A2,,AnA,ϕ(A1A2An)=Σnk=1A1Ak1ϕ(Ak)Ak+1An,其中A1A2An=(((A1A2)A3)An),那么称ϕ-Jordan- 型导子; 如果有ϕ(A1A2An)=Σnk=1A1Ak1ϕ(Ak)Ak+1An,其中A1A2An=(((A1A2)A3)An),那么称ϕξ--Jordan- 型导子. 李等[3]得到下面结论: 设A是含单位元I和非平凡投影P- 代数, 满足: (1) 若XAP=0,X=0; (2) 若XA(IP)=0,X=0.如果ϕA上的非线性-Jordan- 型导子当且仅当ϕ是可加的- 导子. 在文献[3] 中作者还给出了下面的猜想: 设A是含单位元I和非平凡投影P- 代数, 满足: (1) 若XAP=0,X=0; (2) 若XA(IP)=0,X=0.如果ϕA上的非线性ξ--Jordan- 型导子当且仅当ϕ是可加的- 导子, 且对所有的AA,ϕ(ξA)=ξϕ(A). 本文来证明这个猜想.

ξ=1时文献[3] 已得到了结果. 当ξ=1时, 本文定理2.1将给予证明. 当ξC{0,±1}时, 本文定理3.1和定理3.2将给予讨论.

2 (-1)--Jordan- 型导子

本节中设ξ=1.

定理2.1  设A是复数域上含单位元I和非平凡投影P- 代数, 满足: (1) 若XAP=0,X=0; (2) 若XA(IP)=0,X=0.如果映射ϕ:AA满足对所有An1,AnA,A1=iIA1=I,A2==An2=I,n2,ϕ(A1A2An)=Σnk=1A1Ak1ϕ(Ak)Ak+1An,那么ϕ是可加的- 导子.

   设P=P1,P2=IP1,Aij=PiAPj,i,j=1,2,A=2i,j=1Aij.所以对任意AA,A=2i,j=1Aij,其中AijAij.n=2,A1,A2A中的任意元. 若n=3,A2,A3A中的任意元.

断言2.1   ϕ(0)=0.

易得ϕ(0)=ϕ(iIII00)=0.

断言2.2   任取A12A12,A21A21,ϕ(A12+A21)=ϕ(A12)+ϕ(A21).

T=ϕ(A12+A21)ϕ(A12)ϕ(A21).iII(P1P2)A12=0和断言2.1得

ϕ(iI)I(P1P2)(A12+A21)++iIIϕ(P1P2)(A12+A21)+iII(P1P2)ϕ(A12+A21)=ϕ(iII(P1P2)(A12+A21))=ϕ(iII(P1P2)A12)+ϕ(iII(P1P2)A21)=ϕ(iI)I(P1P2)(A12+A21)++iIIϕ(P1P2)(A12+A21)+iII(P1P2)(ϕ(A12)+ϕ(A21)).

由此可得iII(P1P2)T=0,所以T11=T22=0.

又由断言2.1得

ϕ(iI)I(A12+A21)P1++iIIϕ(A12+A21)P1+iII(A12+A21)ϕ(P1)=ϕ(iII(A12+A21)P1)=ϕ(iIIA12P1)+ϕ(iIIA21P1)=ϕ(iI)I(A12+A21)P1++iII(ϕ(A12)+ϕ(A21))P1+iII(A12+A21)ϕ(P1).

由此可得iIITP1=0,所以T21=0.类似可得T12=0.

断言2.3  任取A11A11,A12A12,A21A21,A22A22,ϕ(A11+A12+A21)=ϕ(A11)+ϕ(A12)+ϕ(A21),ϕ(A12+A21+A22)=ϕ(A12)+ϕ(A21)+ϕ(A22).

T=ϕ(A11+A12+A21)ϕ(A11)ϕ(A12)ϕ(A21).由断言2.1和断言2.2得

ϕ(iI)IP2(A11+A12+A21)++iIIϕ(P2)(A11+A12+A21)+iIIP2ϕ(A11+A12+A21)=ϕ(iIIP2(A11+A12+A21))=ϕ(iIIP2A11)+ϕ(iIIP2(A12+A21))=ϕ(iI)IP2(A11+A12+A21)++iIIϕ(P2)(A11+A12+A21)+iIIP2(ϕ(A11)+ϕ(A12)+ϕ(A21)).

由此可得iIIP2T=0,所以T12=T21=T22=0.

又由断言2.1得

ϕ(iI)(P1P2)(A11+A12+A21)++iIϕ(P1P2)(A11+A12+A21)+iI(P1P2)ϕ(A11+A12+A21)=ϕ(iI(P1P2)(A11+A12+A21))=ϕ(iI(P1P2)A11)+ϕ(iI(P1P2)A12)+ϕ(iI(P1P2)A21)=ϕ(iI)(P1P2)(A11+A12+A21)++iIϕ(P1P2)(A11+A12+A21)+iI(P1P2)(ϕ(A11)+ϕ(A12)+ϕ(A21)).

由此可得iI(P1P2)T=0,所以T11=0.类似可以证明第二种情况成立.

断言2.4  任取A11A11,A12A12,A21A21,A22A22,ϕ(A11+A12+A21+A22)=ϕ(A11)+ϕ(A12)+ϕ(A21)+ϕ(A22)

T=ϕ(A11+A12+A21+A22)ϕ(A11)ϕ(A12)ϕ(A21)ϕ(A22).由断言2.1和断言2.3得

ϕ(iI)IP2(A11+A12+A21+A22)++iIIϕ(P2)(A11+A12+A21+A22)+iIIP2ϕ(A11+A12+A21+A22)=ϕ(iIIP2(A11+A12+A21+A22))=ϕ(iIIP2A11)+ϕ(iIIP2(A12+A21+A22))=ϕ(iI)IP2(A11+A12+A21+A22)++iIIϕ(P2)(A11+A12+A21+A22)+iIIP2(ϕ(A11)+ϕ(A12)+ϕ(A21)+ϕ(A22)).

由此可得iIIP2T=0,所以T12=T21=T22=0. 类似可得T11=0.

断言2.5  设i,j{1,2},ij,Aij,BijAij,则有ϕ(Aij+Bij)=ϕ(Aij)+ϕ(Bij).

由断言2.4得

ϕ(Aij+Bij)+ϕ(Aij)+ϕ(BijAij)=ϕ(iIIPi+Aij2n2(i(Pj+Bij)))=ϕ(iI)IPi+Aij2n2(i(Pj+Bij))++iII(ϕ(Pi2n2)+ϕ(Aij2n2))(i(Pj+Bij))+iIIPi+Aij2n2(ϕ(iPj)+ϕ(iBij))=ϕ(iIIPi2n2iPj)+ϕ(iIIPi2n2iBij)+ϕ(iIIAij2n2iPj)+ϕ(iIIAij2n2iBij)=ϕ(Bij)+ϕ(Aij+Aij)+ϕ(BijAij)=ϕ(Bij)+ϕ(Aij)+ϕ(Aij)+ϕ(BijAij),

ϕ(Aij+Bij)=ϕ(Aij)+ϕ(Bij).

断言2.6  设i{1,2},Aii,BiiAii,则有ϕ(Aii+Bii)=ϕ(Aii)+ϕ(Bii).

T=ϕ(Aii+Bii)ϕ(Aii)ϕ(Bii).ij,由断言2.1得

ϕ(iI)IPj(Aii+Bii)++iIIϕ(Pj)(Aii+Bii)+iIIPjϕ(Aii+Bii)=ϕ(iIIPj(Aii+Bii))=ϕ(iIIPjAii)+ϕ(iIIPjBii)=ϕ(iI)IPj(Aii+Bii)++iIIϕ(Pj)(Aii+Bii)+iIIPj(ϕ(Aii)+ϕ(Bii)),

由此可得iIIPjT=0,所以Tij=Tji=Tjj=0.

任取CijAij,ij,由断言2.5得

ϕ(iI)I(Aii+Bii)Cij++iIIϕ(Aii+Bii)Cij+iII(Aii+Bii)ϕ(Cij)=ϕ(iII(Aii+Bii)Cij)=ϕ(iIIAiiCij)+ϕ(iIIBiiCij)=ϕ(iI)I(Aii+Bii)Cij++iII(ϕ(Aii)+ϕ(Bii))Cij+iII(Aii+Bii)ϕ(Cij).

由此可得iIITiiCij=0,TiiCij=0,即对所有CA,TiiCPj=0,由已知得Tii=0.

断言2.7  ϕ是可加的.

由断言2.4–2.6得ϕ是可加的.

断言2.8  ϕ(I)=0,ϕ(iI)=0.

0=ϕ(III)=ϕ(I)II=2n2(ϕ(I)ϕ(I))ϕ(I)=ϕ(I).另一方面, 由断言2.7得

2n1ϕ(iI)=ϕ(iIII)=ϕ(iI)II++iIϕ(I)I+iIIϕ(I)=2n2(ϕ(iI)ϕ(iI))+(n1)2n1iϕ(I),

ϕ(iI)=ϕ(iI)+2(n1)iϕ(I),进而ϕ(iI)=ϕ(iI)2(n1)iϕ(I)=ϕ(iI)4(n1)iϕ(I),所以ϕ(I)=0,ϕ(iI)=ϕ(iI).

0=2n1ϕ(I)=ϕ(iIIIiI)=ϕ(iI)IIiI+iIIIϕ(iI)=2niϕ(iI)

ϕ(iI)=0.

断言2.9  ϕ(Pi)=Piϕ(Pi)Pj+Pjϕ(Pi)Pi,i,j=1,2.

任取AA,2n1ϕ(iA)=ϕ(iIIIA)=iIIIϕ(A)=2n1iϕ(A)

ϕ(iA)=iϕ(A).
(2.1)

任取A,BA,由(2.1) 式和断言2.8得

2n2iϕ(AB)=2n2ϕ(iAB)=ϕ(iIIIAB)=iIIIϕ(A)B+iIIIAϕ(B)=2n2i(ϕ(A)B+Aϕ(B)),

所以

ϕ(AB)=ϕ(A)B+Aϕ(B).
(2.2)

任取AA,由(2.2) 式和断言2.8得ϕ(A)+ϕ(A)=ϕ(AI)=ϕ(A)I=ϕ(A)+ϕ(A),所以

ϕ(A)=ϕ(A).
(2.3)

(2.2) 式和(2.3) 式得2ϕ(Pi)=ϕ(PiPi)=2(ϕ(Pi)Pi+Piϕ(Pi)),由此可得ϕ(Pi)=Piϕ(Pi)Pj+Pjϕ(Pi)Pi.

T=Piϕ(Pi)PjPjϕ(Pi)Pi,T=T.对所有AA,定义映射φ:AAφ(A)=ϕ(A)(ATTA).易得φ有下面性质.

断言2.10   (1) 对所有A,BA,φ(AB)=φ(A)B+Aφ(B).

(2) φ(Pi)=0,i=1,2.

(3) φ是可加的.

(4) 对所有AA,φ(A)=φ(A).

(5) φ是可加的导子当且仅当ϕ是可加的导子.

根据文献[3] 的断言14–16得定理2.1成立. 证毕.

3 ξ--Jordan- 型导子

定理3.1    设A是含单位元I和非平凡投影P- 代数, ξC{0},满足: (1) 若XAP=0,X=0; (2) 若XA(IP)=0,X=0.如果映射ϕ:AA满足对所有An1,AnA,A1=I,A2==An2=11+ξI,n2,ϕ(A1A2An)=Σnk=1A1Ak1ϕ(Ak)Ak+1An,那么ϕ是可加的.

   当n=2时, 按照文献[5] 的证明可得定理3.1成立, 下面的证明中假设n3.ξ=1时文献[3] 已得到了结果. 当ξ=1时定理2.1已给予证明. 下面的证明中假设ξ1.

断言3.1   ϕ(0)=0.

ϕ(0)=ϕ(I11+ξI11+ξI00)=0.

断言3.2  任取A12A12,A21A21,ϕ(A12+A21)=ϕ(A12)+ϕ(A21).

T=ϕ(A12+A21)ϕ(A12)ϕ(A21).(P11¯ξP2)A12=0和断言3.1得

ϕ(I)11+ξI11+ξIP11¯ξP21+ξ(A12+A21)++I11+ξI11+ξIϕ(P11¯ξP21+ξ)(A12+A21)+I11+ξI11+ξIP11¯ξP21+ξϕ(A12+A21)=ϕ(I11+ξI11+ξIP11¯ξP21+ξ(A12+A21))=ϕ(I11+ξI11+ξIP11¯ξP21+ξA12)+ϕ(I11+ξI11+ξIP11¯ξP21+ξA21)=ϕ(I)11+ξI11+ξIP11¯ξP21+ξ(A12+A21)++I11+ξI11+ξIϕ(P11¯ξP21+ξ)(A12+A21)+I11+ξI11+ξIP11¯ξP21+ξ(ϕ(A12)+ϕ(A21)),

I11+ξI11+ξIP11¯ξP21+ξT=0,由此可得(1+ξ)T11(1+1¯ξ)T22+(ξ1¯ξ)T21=0.由于ξ0,1,所以T11=T22=0.

A12P1=0

ϕ(I)11+ξI11+ξI(A12+A21)P1++I11+ξI11+ξIϕ(A12+A21)P1+I11+ξI11+ξI(A12+A21)ϕ(P1)=ϕ(I11+ξI11+ξI(A12+A21)P1)=ϕ(I11+ξI11+ξIA12P1)+ϕ(I11+ξI11+ξIA21P1)=ϕ(I)11+ξI11+ξI(A12+A21)P1++I11+ξI11+ξI(ϕ(A12)+ϕ(A21))P1+I11+ξI11+ξI(A12+A21)ϕ(P1),

I11+ξI11+ξITP1=0,由此可得(1+ξ)T21+(ξ+|ξ|2)T21=0,所以T21=0.类似可得T12=0.

断言3.3  设i,j,k{1,2},ij.对所有AkkAkk,AijAij,ϕ(Akk+Aij)=ϕ(Akk)+ϕ(Aij).

下面只证明情形i=k=1,j=2,其他情形类似可证. 设T=ϕ(A11+A12)ϕ(A11)ϕ(A12).P2A11=0和断言3.1得

ϕ(I)11+ξI11+ξIP21+ξ(A11+A12)+I11+ξI11+ξIϕ(P21+ξ)(A11+A12)+I11+ξI11+ξIP21+ξϕ(A11+A12)=ϕ(I11+ξI11+ξIP21+ξ(A11+A12))=ϕ(I11+ξI11+ξIP21+ξA11)+ϕ(I11+ξI11+ξIP21+ξA12)=ϕ(I)11+ξI11+ξIP21+ξ(A11+A12)++I11+ξI11+ξIϕ(P21+ξ)(A11+A12)+I11+ξI11+ξIP21+ξ(ϕ(A11)+ϕ(A12)),

I11+ξI11+ξIP21+ξT=0,由此可得T12=T21=T22=0.

另一方面, 由(P11¯ξP2)A12=0

ϕ(I)11+ξI11+ξIP11¯ξP21+ξ(A11+A12)++I11+ξI11+ξIϕ(P11¯ξP21+ξ)(A11+A12)+I11+ξI11+ξIP11¯ξP21+ξϕ(A11+A12)=ϕ(I11+ξI11+ξIP11¯ξP21+ξ(A11+A12))=ϕ(I11+ξI11+ξIP11¯ξP21+ξA11)+ϕ(I11+ξI11+ξIP11¯ξP21+ξA12)=ϕ(I)11+ξI11+ξIP11¯ξP21+ξ(A11+A12)++I11+ξI11+ξIϕ(P11¯ξP21+ξ)(A11+A12)+I11+ξI11+ξIP11¯ξP21+ξ(ϕ(A11)+ϕ(A12)),

I11+ξI11+ξIP11¯ξP21+ξT=0,由此可得T11=0.

断言3.4  任取A11A11,A12A12,A21A21,A22A22,ϕ(A11+A12+A21)=ϕ(A11)+ϕ(A12)+ϕ(A21),ϕ(A12+A21+A22)=ϕ(A12)+ϕ(A21)+ϕ(A22).

T=ϕ(A11+A12+A21)ϕ(A11)ϕ(A12)ϕ(A21).由断言3.1和断言3.2得

ϕ(I)11+ξI11+ξIP21+ξ(A11+A12+A21)++I11+ξI11+ξIϕ(P21+ξ)(A11+A12+A21)+I11+ξI11+ξIP21+ξϕ(A11+A12+A21)=ϕ(I11+ξI11+ξIP21+ξ(A11+A12+A21))=ϕ(I11+ξI11+ξIP21+ξA11)+ϕ(I11+ξI11+ξIP21+ξ(A12+A21))=ϕ(I)11+ξI11+ξIP21+ξ(A11+A12+A21)++I11+ξI11+ξIϕ(P21+ξ)(A11+A12+A21)+I11+ξI11+ξIP21+ξ(ϕ(A11)+ϕ(A12)+ϕ(A21)),

I11+ξI11+ξIP21+ξT=0,由此可得T12=T21=T22=0.

另一方面, 由(1¯ξP1+P2)A21=0和断言3.3得

ϕ(I)11+ξI11+ξI1¯ξP1+P21+ξ(A11+A12+A21)++I11+ξI11+ξIϕ(1¯ξP1+P21+ξ)(A11+A12+A21)+I11+ξI11+ξI1¯ξP1+P21+ξϕ(A11+A12+A21)=ϕ(I11+ξI11+ξI1¯ξP1+P21+ξ(A11+A12+A21))=ϕ(I11+ξI11+ξI1¯ξP1+P21+ξ(A11+A12))+ϕ(I11+ξI11+ξI1¯ξP1+P21+ξA21)=ϕ(I)11+ξI11+ξI1¯ξP1+P21+ξ(A11+A12+A21)++I11+ξI11+ξIϕ(1¯ξP1+P21+ξ)(A11+A12+A21)+I11+ξI11+ξI1¯ξP1+P21+ξ(ϕ(A11)+ϕ(A12)+ϕ(A21)),

I11+ξI11+ξI1¯ξP1+P21+ξT=0,由此可得T11=0,所以ϕ(A11+A12+A21)=ϕ(A11)+ϕ(A12)+ϕ(A21).第二种情况类似可证.

断言3.5  任取A11A11,A12A12,A21A21,A22A22,ϕ(A11+A12+A21+A22)=ϕ(A11)+ϕ(A12)+ϕ(A21)+ϕ(A22).

T=ϕ(A11+A12+A21+A22)ϕ(A11)ϕ(A12)ϕ(A21)ϕ(A22).由断言3.1和断言3.4得

ϕ(I)11+ξI11+ξIP11+ξ(A11+A12+A21+A22)++I11+ξI11+ξIϕ(P11+ξ)(A11+A12+A21+A22)+I11+ξI11+ξIP11+ξϕ(A11+A12+A21+A22)=ϕ(I11+ξI11+ξIP11+ξ(A11+A12+A21+A22))=ϕ(I11+ξI11+ξIP11+ξ(A11+A12+A21))+ϕ(I11+ξI11+ξIP11+ξA22)=ϕ(I)11+ξI11+ξIP11+ξ(A11+A12+A21+A22)++I11+ξI11+ξIϕ(P11+ξ)(A11+A12+A21+A22)+I11+ξI11+ξIP11+ξ(ϕ(A11)+ϕ(A12)+ϕ(A21)+ϕ(A22)),

I11+ξI11+ξIP11+ξT=0,由此可得T11=T12=T21=0.类似可证T22=0.

断言3.6  设i,j{1,2},ij.对所有Aij,BijAij,ϕ(Aij+Bij)=ϕ(Aij)+ϕ(Bij).

(Pi+Aij)(Pj+Bij)=Aij+Bij+ξAij+ξBijAij和断言3.5得

ϕ(Aij+Bij)+ϕ(ξAij)+ϕ(ξBijAij)=ϕ(I11+ξI11+ξIPi+Aij1+ξ(Pj+Bij))=ϕ(I)11+ξI11+ξIPi+Aij1+ξ(Pj+Bij)++I11+ξI11+ξI(ϕ(Pi1+ξ)+ϕ(Aij1+ξ))(Pj+Bij)+I11+ξI11+ξIPi+Aij1+ξ(ϕ(Pj)+ϕ(Bij))=ϕ(I11+ξI11+ξIPi1+ξPj)+ϕ(I11+ξI11+ξIAij1+ξPj)+ϕ(I11+ξI11+ξIPi1+ξBij)+ϕ(I11+ξI11+ξIAij1+ξBij)=ϕ(Aij+ξAij)+ϕ(Bij)+ϕ(ξBijAij)=ϕ(Aij)+ϕ(Bij)+ϕ(ξAij)+ϕ(ξBijAij),

ϕ(Aij+Bij)=ϕ(Aij)+ϕ(Bij).

断言3.7  任取Aii,BiiAii,1i2,ϕ(Aii+Bii)=ϕ(Aii)+ϕ(Bii).

下面证明T=ϕ(Aii+Bii)ϕ(Aii)ϕ(Bii)=0.ij,

ϕ(I)11+ξI11+ξIPj1+ξ(Aii+Bii)++I11+ξI11+ξIϕ(Pj1+ξ)(Aii+Bii)+I11+ξI11+ξIPj1+ξϕ(Aii+Bii)=ϕ(I11+ξI11+ξIPj1+ξ(Aii+Bii))=ϕ(I11+ξI11+ξIPj1+ξAii)+ϕ(I11+ξI11+ξIPj1+ξBii)=ϕ(I)11+ξI11+ξIPj1+ξ(Aii+Bii)++I11+ξI11+ξIϕ(Pj1+ξ)(Aii+Bii)+I11+ξI11+ξIPj1+ξ(ϕ(Aii)+ϕ(Bii))

I11+ξI11+ξIPj1+ξT=0,Tij=Tji=Tjj=0.

任取CijAij,ij,由断言3.6得

ϕ(I)11+ξI11+ξI(Aii+Bii)Cij++I11+ξI11+ξIϕ(Aii+Bii)Cij+I11+ξI11+ξI(Aii+Bii)ϕ(Cij)=ϕ(I11+ξI11+ξI(Aii+Bii)Cij)=ϕ((1+ξ)AiiCij+(1+ξ)BiiCij)=ϕ((1+ξ)AiiCij)+ϕ((1+ξ)BiiCij)=ϕ(I11+ξI11+ξIAiiCij)+ϕ(I11+ξI11+ξIBiiCij)=ϕ(I)11+ξI11+ξI(Aii+Bii)Cij++I11+ξI11+ξI(ϕ(Aii)+ϕ(Bii))Cij+I11+ξI11+ξI(Aii+Bii)ϕ(Cij),

I11+ξI11+ξITCij=0,(1+ξ)TiiCij=0,即对所有CA,TiiCPj=0.由已知得Tii=0,所以ϕ(Aii+Bii)=ϕ(Aii)+ϕ(Bii).

由断言3.5–3.7得ϕ是可加的. 定理3.1证毕.

引理3.1   设|ξ|0,1,IIII0.

   用数学归纳法. 当n=2时, 则II=I+ξI0.n=k时, 假设αI=IIIα0.n=k+1时, 则IIII=(α+ξα)I,α+ξα=0,ξ=αα,进而|ξ|2=ξ¯ξ=1,与已知矛盾, 所以IIII0.证毕.

定理3.2   设A是含单位元I和非平凡投影P- 代数, ξC{0},满足: (1) 若XAP=0,X=0; (2) 若XA(IP)=0,X=0.如果映射ϕ:AA满足对所有An2,An1,AnA,A1=IiI,A2==An3=I,ϕ(A1A2An)=Σnk=1A1Ak1ϕ(Ak)Ak+1An,那么ϕ是可加的- 导子, 且对所有的AA,ϕ(ξA)=ξϕ(A).

   当n=2时, 按照文献[5] 的证明可得定理3.2成立, 下面的证明中假设n3.

ξ=1,1时, 已有结果, 下面证明中假设ξ±1.分两种情况进行讨论.

情形1  |ξ|=1ξ±1.

0=ϕ(IIiIiI)=ϕ(I)IiIiI++Iϕ(I)iIiI+IIϕ(iI)iI+IIiIϕ(iI)=2n3i(1+ξ)(ϕ(iI)+ϕ(iI))

ϕ(iI)=ϕ(iI).一方面, 由

\begin{eqnarray*} 2^{n-2}\phi(\mbox{i}(1-\xi)I)&=&\phi(2^{n-2}\mbox{i}(1-\xi)I)=\phi(\mbox{i}I\diamond I\diamond \ldots \diamond I)\\ &=&\phi(\mbox{i}I)\diamond I\diamond \ldots \diamond I+\mbox{i}I\diamond\phi(I)\diamond \ldots \diamond I+\ldots+\mbox{i}I\diamond I\diamond \ldots \diamond\phi(I)\\ &=&2^{n-2}(1-\xi)\phi(\mbox{i}I)+2^{n-3}(n-2)\mbox{i}(1-\xi)\phi(I)^{*}+2^{n-3}n\mbox{i}(1-\xi)\phi(I) \end{eqnarray*}

\begin{align} 2\phi(\mbox{i}(1-\xi)I)=2(1-\xi)\phi(\mbox{i}I)+(n-2)\mbox{i}(1-\xi)\phi(I)^{*}+n\mbox{i}(1-\xi)\phi(I). \end{align}
(3.1)

另一方面, 由

\begin{eqnarray*} 2^{n-2}\phi(\mbox{i}(1+\xi)I)&=&\phi(2^{n-2}\mbox{i}(1+\xi)I)=\phi(I\diamond I\diamond \ldots \diamond I\diamond\mbox{i}I)\\ &=&\phi(I)\diamond I\diamond \ldots \diamond I\diamond\mbox{i}I+I\diamond\phi(I)\diamond \ldots \diamond I\diamond\mbox{i}I+\ldots+I\diamond I\diamond \ldots \diamond I\diamond\phi(\mbox{i}I)\\ &=&2^{n-3}\mbox{i}(n+(n-2)\xi)\phi(I)+2^{n-3}\mbox{i}(n-2+n\xi)\phi(I)^{*}+2^{n-2}(1+\xi)\phi(\mbox{i}I) \end{eqnarray*}

\begin{align} 2\phi(\mbox{i}(1+\xi)I)=2(1+\xi)\phi(\mbox{i}I)+\mbox{i}(n-2+n\xi)\phi(I)^{*}+\mbox{i}(n+(n-2)\xi)\phi(I). \end{align}
(3.2)

注意到 \xi+n-2\neq 0, 由(3.1) 式和(3.2) 式得

\begin{align} \phi(I)^{*}=\frac{\xi-n}{\xi+n-2}\phi(I). \end{align}
(3.3)

(3.3) 式取伴随得

\phi(I)=\frac{\overline{\xi}-n}{\overline{\xi}+n-2}\phi(I)^{*}=\frac{\overline{\xi}-n}{\overline{\xi}+n-2}\cdot\frac{\xi-n}{\xi+n-2}\phi(I).

\phi(I)\neq 0, \xi=1, 矛盾. 所以

\begin{align} \phi(I)=0. \end{align}
(3.4)

任取 A\in{\cal A},

\begin{eqnarray*} 2^{n-2}\phi((1+\xi)A)&=&\phi(2^{n-2}(1+\xi)A)=\phi(I\diamond I\diamond \ldots \diamond I\diamond A)\\ &=&I\diamond I\diamond \ldots \diamond I\diamond\phi(A)=2^{n-2}(1+\xi)\phi(A) \end{eqnarray*}

\begin{align} \phi((1+\xi)A)=(1+\xi)\phi(A). \end{align}
(3.5)

对所有 A, B\in{\cal A},

\begin{eqnarray*} 2^{n-3}\phi((1+\xi)(AB+BA^{*}))&=&\phi(I\diamond I\diamond \ldots \diamond I\diamond A\diamond B)\\ &=&I\diamond I\diamond \ldots \diamond I\diamond\phi(A)\diamond B+I\diamond I\diamond \ldots \diamond I\diamond A\diamond\phi(B)\\ &=&2^{n-3}(1+\xi)(\phi(A)B+B\phi(A)^{*}+A\phi(B)+\phi(B)A^{*}). \end{eqnarray*}

联合(3.5) 式得

\begin{align} \phi(AB+BA^{*})=\phi(A)B+B\phi(A)^{*}+A\phi(B)+\phi(B)A^{*}. \end{align}
(3.6)

(3.6) 式中取 B=I

\begin{align} \phi(A^{*})=\phi(A)^{*}. \end{align}
(3.7)

由(3.4)–(3.5) 式和

\begin{eqnarray*} 2^{n-2}\phi((\xi-1)I)&=&\phi(\mbox{i}I\diamond I\diamond \ldots \diamond I\diamond \mbox{i}I)\\ &=&\phi(\mbox{i}I)\diamond I\diamond \ldots \diamond I\diamond \mbox{i}I+\mbox{i}I\diamond I\diamond \ldots \diamond I\diamond \phi(\mbox{i}I)=2^{n-1}\mbox{i}(1-\xi)\phi(\mbox{i}I) \end{eqnarray*}

\phi(\mbox{i}I)=0.

任取 A=A^{*}\in{\cal A}, 由(3.6) 式和(3.7) 式得

2\phi(\mbox{i}A)=\phi(A(\mbox{i}I)+(\mbox{i}I)A^{*})=\phi(A)\mbox{i}I+\mbox{i}I\phi(A)^{*}=2\mbox{i}\phi(A),

\phi(\mbox{i} A)=\mbox{i} \phi(A). 对所有 A\in{\cal A}, A=A_{1}+\mbox{i}A_{2}, A_{1}=\frac{A+A^{*}}{2}, A_{2}=\frac{A-A^{*}}{2\mbox{i}}

\begin{eqnarray*} \phi(\mbox{i}A)&=&\phi(\mbox{i}(A_{1}+\mbox{i}A_{2}))=\phi(\mbox{i}A_{1}-A_{2})=\mbox{i} \phi(A_{1})-\phi(A_{2})=\mbox{i} \phi(A_{1})+\mbox{i}^{2}\phi(A_{2})\\ &=&\mbox{i} \phi(A_{1})+\mbox{i}\phi(\mbox{i}A_{2})=\mbox{i}\phi(A_{1}+\mbox{i}A_{2})=\mbox{i}\phi(A). \end{eqnarray*}

任取 A, B\in{\cal A}, 由(3.6) 式得

\begin{align} \begin{array}[b]{rcl} \phi(-AB+BA^{*})&=&\phi((\mbox{i}A)(\mbox{i}B)+(\mbox{i}B)(\mbox{i}A)^{*})\\ &=&\phi(\mbox{i}A)(\mbox{i}B)+(\mbox{i}B)\phi(\mbox{i}A)^{*}+(\mbox{i}A)\phi(\mbox{i}B)+\phi(\mbox{i}B)(\mbox{i}A)^{*}\\ &=&-\phi(A)B+B\phi(A)^{*}-A\phi(B)+\phi(B)A^{*}. \end{array} \end{align}
(3.8)

由(3.6) 式和(3.8) 式得 \phi(AB)=\phi(A)B+A\phi(B). 所以 \phi * - 导子. 由(3.5) 式得对所有 A\in{\cal A}, \phi(\xi A)=\xi\phi(A).

情形2   |\xi|\neq 1.

下面的证明中, 设 \alpha_{n}I=\underbrace{I\diamond I\diamond\ldots\diamond I}\limits_{n}.

\phi(I\diamond\ldots\diamond I\diamond I\diamond\mbox{i}I\diamond\mbox{i}I)=\phi(I\diamond\ldots\diamond I\diamond\mbox{i}I\diamond\mbox{i}I\diamond I)

\begin{eqnarray*} &&\alpha_{n-3}\diamond\phi(I)\diamond\mbox{i}I\diamond\mbox{i}I+\alpha_{n-3}\diamond I\diamond\phi(\mbox{i}I)\diamond\mbox{i}I+\alpha_{n-3}\diamond I\diamond\mbox{i}I\diamond\phi(\mbox{i}I)\\ &=&\alpha_{n-3}\diamond\phi(\mbox{i}I)\diamond\mbox{i}I\diamond I+\alpha_{n-3}\diamond\mbox{i}I\diamond\phi(\mbox{i}I)\diamond I+\alpha_{n-3}\diamond\mbox{i}I\diamond\mbox{i}I\diamond\phi(I), \end{eqnarray*}

计算得

\begin{eqnarray*} &&\mbox{i}(2\alpha_{n-3}+3\alpha_{n-3}^{*}\xi-\alpha_{n-3}^{*}\xi|\xi|^{2})\phi(\mbox{i}I)+\mbox{i}(\alpha_{n-3}^{*}\xi +2\alpha_{n-3}|\xi|^{2} +\alpha_{n-3}^{*}\xi|\xi|^{2})\phi(\mbox{i}I)^{*} \\ &&+(\alpha_{n-3}+\alpha_{n-3}^{*}\xi)(|\xi|^{2}-1)\phi(I)\\ &=&\mbox{i}(2\alpha_{n-3}+\alpha_{n-3}^{*}\xi-\alpha_{n-3}^{*}\xi|\xi|^{2}-2\alpha_{n-3}|\xi|^{2})\phi(\mbox{i}I)\\ &&-\mbox{i}(\alpha_{n-3}^{*}\xi-\alpha_{n-3}^{*}\xi|\xi|^{2})\phi(\mbox{i}I)^{*}+(\alpha_{n-3}+\alpha_{n-3}^{*}\xi)(|\xi|^{2}-1)\phi(I), \end{eqnarray*}

\xi(\alpha_{n-3}^{*}+\alpha_{n-3}\overline{\xi})(\phi(\mbox{i}I)+\phi(\mbox{i}I)^{*})=0. 由引理3.1得 (\alpha_{n-3}^{*}+\alpha_{n-3}\overline{\xi})^{*}=\alpha_{n-3}+\alpha_{n-3}^{*}\xi=\alpha_{n-2}\neq 0, 所以

\begin{align} \phi(\mbox{i}I)^{*}=-\phi(\mbox{i}I). \end{align}
(3.9)

另一方面, 由 \phi(I\diamond\ldots\diamond I\diamond\mbox{i}I\diamond\mbox{i}I\diamond\mbox{i}I)=\phi(I\diamond\ldots\diamond I\diamond -I\diamond\mbox{i}I\diamond I)

\begin{eqnarray*} &&\alpha_{n-3}\diamond\phi(\mbox{i}I)\diamond\mbox{i}I\diamond\mbox{i}I+\alpha_{n-3}\diamond \mbox{i}I\diamond\phi(\mbox{i}I)\diamond\mbox{i}I+\alpha_{n-3}\diamond \mbox{i}I\diamond\mbox{i}I\diamond\phi(\mbox{i}I)\\ &=&\alpha_{n-3}\diamond\phi(-I)\diamond\mbox{i}I\diamond I+\alpha_{n-3}\diamond -I\diamond\phi(\mbox{i}I)\diamond I+\alpha_{n-3}\diamond-I\diamond\mbox{i}I\diamond\phi(I), \end{eqnarray*}

结合(3.9) 式得 (\alpha_{n-3}+\alpha_{n-3}^{*}\xi)(1-|\xi|^{2})\phi(\mbox{i}I)=(\alpha_{n-3}+\alpha_{n-3}^{*}\xi)(1-|\xi|^{2})\mbox{i}\phi(I), 由引理3.1得

\begin{align} \phi(\mbox{i}I)=\mbox{i}\phi(I). \end{align}
(3.10)

由(3.9) 式和(3.10) 式得

\begin{align} \phi(I)^{*}=\phi(I). \end{align}
(3.11)

由(3.11) 式得

\begin{eqnarray*} \phi(\alpha_{n}I)=\phi(I\diamond \ldots \diamond I\diamond I)=\phi(I)\diamond\ldots\diamond I\diamond I+\ldots+I\diamond \ldots\diamond I\diamond\phi(I)=n\alpha_{n}\phi(I) \end{eqnarray*}

对所有的 |\xi|\neq 1 成立. 若 \xi 为有理数, 则 \alpha_{n}\phi(I)=n\alpha_{n}\phi(I). 如果 \phi(I)\neq 0, 由引理3.1得 n=1, 与题设矛盾. 所以

\begin{align} \phi(I)=0. \end{align}
(3.12)

由(3.10) 式得

\begin{align} \phi(\mbox{i}I)=0. \end{align}
(3.13)

对所有 A\in{\cal A}, 因为 \phi(I\diamond \ldots \diamond I\diamond A\diamond\mbox{i}I\diamond\mbox{i}I)=I\diamond \ldots \diamond I\diamond \phi(A)\diamond\mbox{i}I\diamond\mbox{i}I, 由此可得 \phi(\alpha_{n-2}(|\xi|^{2}-1)A)=\alpha_{n-2}(|\xi|^{2}-1)\phi(A), 进而

\begin{eqnarray*} \alpha_{n-2}(1-|\xi|^{2})\phi(\mbox{i}A)&=&\phi(\alpha_{n-2}(1-|\xi|^{2})\mbox{i}A) =\phi(I\diamond\ldots\diamond I\diamond I\diamond \mbox{i}I\diamond A)\\ &=&I\diamond\ldots\diamond I\diamond I\diamond \mbox{i}I\diamond \phi(A)=\mbox{i}\alpha_{n-2}(1-|\xi|^{2})\phi(A). \end{eqnarray*}

由引理3.1得

\begin{align} \phi(\mbox{i}A)=\mbox{i}\phi(A). \end{align}
(3.14)

另一方面

\begin{align} \begin{array}[b]{rcl} \phi((-\alpha_{n-1}+\xi\alpha_{n-1}^{*}) A)&=&\phi(I\diamond \ldots \diamond I\diamond\mbox{i}I\diamond \mbox{i}A) =I\diamond \ldots \diamond I\diamond\mbox{i}I\diamond \phi(\mbox{i}A) \\ &=&(-\alpha_{n-1}+\xi\alpha_{n-1}^{*}) \phi(A). \end{array} \end{align}
(3.15)

对所有 A^{*}=A\in{\cal A}, 由(3.15) 式得

\begin{eqnarray*} (-\alpha_{n-1}+\xi\alpha_{n-1}^{*})\phi(A) &=&\phi((-\alpha_{n-1}+\xi\alpha_{n-1}^{*}) A)=\phi(I\diamond \ldots \diamond I\diamond\mbox{i}A\diamond \mbox{i}I)\\ &=&I\diamond\ldots\diamond \phi(\mbox{i}A)\diamond \mbox{i}I=-\alpha_{n-1}\phi(A)+\xi\alpha_{n-1}^{*}\phi(A)^{*}. \end{eqnarray*}

由此可得 \xi\alpha_{n-1}^{*}(\phi(A)-\phi(A)^{*})=0, 又由于 \xi\alpha_{n-1}^{*}\neq 0, 所以 \phi(A)=\phi(A)^{*} 对所有 A^{*}=A\in{\cal A} 成立, 结合(3.14) 式, 对所有 A\in{\cal A}, A=A_{1}+\mbox{i}A_{2}, A_{1}=\frac{A+A^{*}}{2}, A_{2}=\frac{A-A^{*}}{2\mbox{i}}

\begin{align} \begin{array}[b]{rcl} \phi(A^{*})&=&\phi(A_{1}-\mbox{i}A_{2})=\phi(A_{1})-\phi(\mbox{i}A_{2})=\phi(A_{1})^{*}-\mbox{i}\phi(A_{2})^{*}\\ &=&\phi(A_{1})^{*}+(\mbox{i}\phi(A_{2}))^{*}=\phi(A_{1})^{*}+\phi(\mbox{i}A_{2})^{*}=\phi(A)^{*}. \end{array} \end{align}
(3.16)

对所有 A\in{\cal A},

\begin{align} \phi((\alpha_{n-1}+\xi\alpha_{n-1}^{*}) A)=\phi(I\diamond \ldots \diamond I\diamond I\diamond A)=(\alpha_{n-1}+\xi\alpha_{n-1}^{*}) \phi(A). \end{align}
(3.17)

由(3.15) 式和(3.17) 式得

\begin{align} \phi(\alpha_{n-1} A)=\alpha_{n-1}\phi(A) \end{align}
(3.18)

\phi(\xi\alpha_{n-1}^{*}A)=\xi\alpha_{n-1}^{*}\phi(A). 联合(3.16) 式得 \xi\alpha_{n-1}^{*}\phi(A)=\phi(\xi\alpha_{n-1}^{*}A)=\phi((\alpha_{n-1}\overline{\xi} A^{*})^{*})=\phi(\alpha_{n-1}\overline{\xi} A^{*})^{*}=(\alpha_{n-1}\phi(\overline{\xi} A^{*}))^{*}=\alpha_{n-1}^{*}\phi(\xi A), 所以

\begin{align} \phi(\xi A)=\xi\phi(A). \end{align}
(3.19)

任取 A, B\in{\cal A},

\begin{align} \begin{array}[b]{rcl} \phi(\alpha_{n-1}AB+\xi\alpha_{n-1}^{*}BA^{*}) &=&\phi(I\diamond \ldots \diamond I\diamond I\diamond A\diamond B)\\ &=&I\diamond\ldots\diamond I\diamond I\diamond\phi(A)\diamond B+I\diamond\ldots\diamond I\diamond I\diamond A\diamond \phi(B)\\ &=&\alpha_{n-1}(\phi(A)B+A\phi(B))+\xi\alpha_{n-1}^{*}(B\phi(A)^{*}+\phi(B)A^{*}). \end{array} \end{align}
(3.20)

另一方面, 由(3.14) 式得

\begin{align} \begin{array}[b]{rcl} \phi(-\alpha_{n-1}AB+\xi\alpha_{n-1}^{*}BA^{*}) &=&\phi(I\diamond \ldots \diamond I\diamond I\diamond \mbox{i}A\diamond \mbox{i}B)\\ &=&I\diamond\ldots\diamond I\diamond I\diamond\phi(\mbox{i}A)\diamond \mbox{i}B+I\diamond\ldots\diamond I\diamond I\diamond \mbox{i}A\diamond \phi(\mbox{i}B)\\ &=&-\alpha_{n-1}(\phi(A)B+A\phi(B))+\xi\alpha_{n-1}^{*}(B\phi(A)^{*}+\phi(B)A^{*}). \end{array} \end{align}
(3.21)

由(3.20) 式和(3.21) 式得 \phi(\alpha_{n-1}AB)=\alpha_{n-1}(\phi(A)B+A\phi(B)). 由(3.18) 式得 \alpha_{n-1}\phi(AB)=\alpha_{n-1}(\phi(A)B+A\phi(B)). 由引理3.1得 \alpha_{n-1}\neq 0, 所以 \phi(AB)=\phi(A)B+A\phi(B). 证毕.

参考文献

Šemrl P .

Quadratic and Quasi-quadratic Functionals

Proc Amer Math Soc, 1993, 119 (4): 1105- 1113

DOI:10.1090/S0002-9939-1993-1158008-3      [本文引用: 2]

Huo D H , Zheng B D , Liu H Y .

Nonlinear maps preserving Jordan triple \eta-*-products

J Math Anal Appl, 2015, 430 (2): 830- 844

DOI:10.1016/j.jmaa.2015.05.021      [本文引用: 1]

Li C J , Zhao Y Y , Zhao F F .

Nonlinear *-Jordan-type derivations on *-algebras

Rochy MT J Math, 2021, 51 (2): 601- 612

[本文引用: 5]

Taghavi A , Nouri M , Razeghi M , Darvish V .

Non-linear \lambda-Jordan triple *-derivation on prime *-algebras

Rochy MT J Math, 2018, 48 (8): 2705- 2716

Li C J , Lu F Y , Fang X C .

Non-linear \xi-Jordan *-derivations on von Neumann algebras

Lin Multi Alg, 2014, 62 (4): 466- 473

DOI:10.1080/03081087.2013.780603      [本文引用: 2]

Zhang F J .

Nonlinear skew Jordan derivable maps on factor von Neumann algebras

Lin Multi Alg, 2016, 64 (10): 2090- 2103

DOI:10.1080/03081087.2016.1139035     

Zhao F F , Li C J .

Nonlinear maps preserving the Jordan triple *-product between factors

Indagat Math, 2018, 29 (2): 619- 627

DOI:10.1016/j.indag.2017.10.010     

Li C J , Lu F Y .

Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras

Complex Anal Oper Th, 2017, 11 (1): 109- 117

DOI:10.1007/s11785-016-0575-y     

Li C J , Chen Q Y , Wang T .

Nonlinear maps preserving the Jordan triple *-product on factor von Neumann algebras

Chinese Ann Math B, 2018, 39 (4): 633- 642

DOI:10.1007/s11401-018-0086-4     

Li C J , Lu F Y , Wang T .

Nonlinear maps preserving the Jordan triple *-product on von Neumann algebras

Ann Funct Anal, 2016, 7 (3): 496- 507

DOI:10.1215/20088752-3624940     

张芳娟.

*- 环上非线性保XY-\xi YX^{*}

数学学报, 2014, 57 (4): 775- 784

URL    

Zhang F J .

Nonlinear preserving product XY-\xi YX^{*} on prime *-ring

Acta Math Sin, 2014, 57 (4): 775- 784

URL    

张芳娟, 朱新宏.

因子von Neumann代数上的非线性\xi-Jordan *- 三重可导映射

数学物理学报, 2021, 41A (4): 978- 988

DOI:10.3969/j.issn.1003-3998.2021.04.006     

Zhang F J , Zhu X H .

Nonlinear \xi-Jordan *-triple derivable mappings on factor von Neumann algebras

Acta Math Sci, 2021, 41A (4): 978- 988

DOI:10.3969/j.issn.1003-3998.2021.04.006     

Zhang F J , Qi X F , Zhang J H .

Nonlinear *-Lie higher derivations on factor von Neumann algebras

B Iran Math Soc, 2016, 42 (3): 659- 678

Huo D H , Zheng B D , Xu J L , Liu H Y .

Nonlinear mappings preserving Jordan multiple *-product on factor von Neumann algebras

Lin Multi Alg, 2015, 63 (5): 1026- 1036

DOI:10.1080/03081087.2014.915321     

霍东华, 刘红玉.

保持Jordan多重\eta-*- 积的非线性映射

数学进展, 2021, 50 (2): 214- 230

URL    

Hou D H , Liu H Y .

Nonlinear maps preserving Jordan multiple \eta-*-products

Advances in Mathematics, 2021, 50 (2): 214- 230

URL    

杨丽春, 安润玲.

von Neumann代数上的Lie可导映射

数学物理学报, 2018, 38A (5): 864- 872

DOI:10.3969/j.issn.1003-3998.2018.05.004     

Yang L C , An R L .

Lie derivable maps on von Neumann algebras

Acta Math Sci, 2018, 38A (5): 864- 872

DOI:10.3969/j.issn.1003-3998.2018.05.004     

齐霄霏.

{\cal J}- 子空间格代数上中心化子和广义导子的刻画

数学物理学报, 2014, 34A (2): 463- 472

URL    

QI X F .

Characterization of centralizers and generalized derivations on {\cal J}-subspace lattice algebras

Acta Math Sci, 2014, 34A (2): 463- 472

URL    

Zhang F J .

Nonlinear \xi-Jordan triple *-derivation on prime *-algebras

Rochy MT J Math, 2022, 52 (1): 323- 333

Zhang F J , Zhu X H .

Nonlinear maps preserving the mixed triple products between factors

Journal of Mathematical Research with Applications, 2022, 42 (3): 297- 306

[本文引用: 1]

/