数学物理学报, 2022, 42(1): 26-34 doi:

论文

拟齐次核的Hilbert型级数不等式的最佳搭配参数条件及应用

洪勇,1, 陈强,2

1 广州华商学院应用数学系 广州 511300

2 广东第二师范学院计算机学院 广州 510303

The Best Matching Parameters Conditions of Hilbert-Type Series Inequality with Quasi-Homogeneous Kernel and Applications

Hong Yong,1, Chen Qiang,2

1 Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 511300

2 School of Computer, Guangdong University of Education, Guangzhou 510303

收稿日期: 2020-10-28  

基金资助: 国家自然科学基金.  61772140

Received: 2020-10-28  

Fund supported: the NSFC.  61772140

作者简介 About authors

洪勇,E-mail:hongyonggdcc@yeah.net , E-mail:hongyonggdcc@yeah.net

陈强,E-mail:cq_c120m3@163.com , E-mail:cq_c120m3@163.com

Abstract

Choosing $ a, b$ as the matching parameters, we can sue the weight function method to obtain Hilbert-type series inequalityin the paper, the problem of how to choose $a, b $ in order to make $ M(a, b)$ the best constant factor in inequality with quasi-homogeneous kernels are discussed, necessary and sufficient conditions are obtained for $a, b $ to the best matching parameters, the formula for the best constant factor is obtained. Finally, their applications to solving operator morn are discussed.

Keywords: Hilbert-type series inequality ; Quasi-homogeneous kernel ; The best constant factor ; The best matching parameter ; Operator norm

PDF (331KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

洪勇, 陈强. 拟齐次核的Hilbert型级数不等式的最佳搭配参数条件及应用. 数学物理学报[J], 2022, 42(1): 26-34 doi:

Hong Yong, Chen Qiang. The Best Matching Parameters Conditions of Hilbert-Type Series Inequality with Quasi-Homogeneous Kernel and Applications. Acta Mathematica Scientia[J], 2022, 42(1): 26-34 doi:

1 引言与预备知识

$ \frac{1}{p}+\frac{1}{q}=1\ (p>1) $, $ K(m, n)\geq0 $, 选择搭配参数$ a, b $, 利用权函数方法可得下面形式的Hilbert型级数不等式

$ \begin{equation} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}K(m, n)a_{m}b_{n}\leq M(a, b)\|\tilde{a}\|_{p, \alpha(a, b)}\|\tilde{b}\|_{q, \beta(a, b)}, \end{equation} $

其中$ \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha(a, b)} $, $ \tilde{b}=\{b_{n}\}\in l_{q}^{\beta(a, b)} $, 而

一般地, 任意选取的搭配参数$ a, b $并不能使式(1.1)的常数因子$ M(a, b) $最佳, 针对不同类型的核$ K(m, n) $, 只有精心选取适当的$ a, b $, 才有可能得到具有最佳常数因子的Hilbert型不等式(1.1). 如何选取最佳的搭配参数来获得具有最佳常数因子的Hilbert型不等式一直是Hilbert型不等式研究的重要课题.

$ T $为级数算子

根据Hilbert型不等式的基本理论, 式(1.1)等价于算子不等式

因此选取最佳搭配参数, 实质上就是讨论算子$ T: l_{p}^{\alpha(a, b)}\rightarrow l_{p}^{\beta(a, b)(1-p)} $的算子范数.

国内外的学者凭借自身的经验和实分析技巧, 针对各种各样的核, 已获得了许多具有最佳常数因子的Hilbert型不等式[1-11]. 显然, 寻求最佳搭配参数$ a, b $所满足的条件, 探究其基本特征是一件很有意义的工作.

$ \lambda_{1}\lambda_{2}>0 $, $ G(u, v) $$ \lambda $阶齐次函数, 则称$ K(m, n)=G(m^{\lambda_{1}}, n^{\lambda_{2}}) $为拟齐次函数. 显然对于$ t>0 $, 有

2012年, 文献[12]针对$ \lambda=1 $情况下的拟齐次核获得了最佳搭配参数$ a, b $的充分条件是$ \lambda_{1}bp+\lambda_{2}aq=\lambda_{1}\lambda_{2}+\lambda_{1}+\lambda_{2} $, 但没有讨论此条件是否必要, 而且还限制了$ a>0 $, $ b>0 $. 2016年, 文献[13]针对齐次核, 在更宽泛的条件下证明了$ a, b $为最佳搭配参数的充分必要条件是$ aq+bp=\lambda+2 $, 结果比较完美. 本文将在文献[12, 13]的基础上, 讨论一般情况下针对拟齐次核的Hilbert级数不等式的最佳搭配参数, 得到了$ a, b $为最佳搭配参数的充分必要条件.

引理1.1   设$ \frac{1}{p}+\frac{1}{q}=1\, (p>1) $, $ a, b\in \mathbb{R} $, $ \lambda_{1}\lambda_{2}>0 $, $ G(u, v) $$ \lambda $阶齐次非负可测函数, $ K(m, n)=G(m^{\lambda_{1}}, n^{\lambda_{2}}) $, $ \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} $, $ K(t, 1)t^{-aq} $$ K(1, t)t^{-bp} $都在$ (0, +\infty) $上递减, 记

$ \lambda_{2}W_{1}(b, p)=\lambda_{1}W_{2}(a, q) $, 且

  作积分变换$ t^{-\frac{\lambda_{2}}{\lambda_{1}}}=u $并根据$ \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} $, 有

$ \lambda_{2}W_{1}(b, p)=\lambda_{1}W_{2}(a, q) $.

根据$ K(1, t)t^{-bp} $$ (0, +\infty) $上递减, 有

同理, 根据$ K(t, 1)t^{-aq} $$ (0, +\infty) $上递减, 可证$ \omega_{2}(a, q, n)\leq n^{\lambda_{2}(\lambda-\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{1}})}W_{2}(a, q) $.

2 最佳搭配参数的充要条件

定理2.1   设$ \frac{1}{p}+\frac{1}{q}=1\, (p>1) $, $ a, b\in \mathbb{R} $, $ \lambda_{1}\lambda_{2}>0 $, $ G(u, v) $$ \lambda $阶齐次非负可测函数, $ \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp-(\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}})=c $, $ G(1, t^{\lambda_{2}})t^{-bp}, G(t^{\lambda_{1}}, 1)t^{-aq}, G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}} $$ G(t^{\lambda_{1}}, 1)t^{-aq+\frac{\lambda_{1}c}{p}} $都在$ (0, +\infty) $上递减, 且

收敛, 那么

$ {\rm (i)} $$ \alpha=\lambda_{1}[\lambda+\frac{1}{\lambda_{2}}+p(\frac{a}{\lambda_{1}}-\frac{b}{\lambda_{2}})] $, $ \beta=\lambda_{2}[\lambda+\frac{1}{\lambda_{1}}+q(\frac{b}{\lambda_{2}}-\frac{a}{\lambda_{1}})] $, 有

$ \begin{equation} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} \leq W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q)\|\tilde{a}\|_{p, \alpha}\|\tilde{b}\|_{q, \beta}, \end{equation} $

其中$ \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha} $, $ \tilde{b}=\{b_{n}\}\in l_{}^{\beta} $.

$ {\rm (ii)} $当且仅当$ c=0 $, 即$ \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} $时, (2.1)式中常数因子$ W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q) $是最佳的, 且当$ c=0 $时, (2.1)式化为

$ \begin{equation} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} \leq \frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}}\|\tilde{a}\|_{p, apq-1}\|\tilde{b}\|_{q, bpq-1}, \end{equation} $

其中$ W_{0}=|\lambda_{1}|W_{2}(a, q)=|\lambda_{2}|W_{1}(b, p) $.

  (i) 选取$ a, b $为搭配参数, 根据Hölder不等式及引理1.1, 有

故(2.2)式成立.

(ii) 充分性: 设$ c=0 $, 则$ \alpha=apq-1 $, $ \beta=bpq-1 $. 根据引理1.1, 有$ \lambda_{2}W_{1}(b, p)=\lambda_{1}W_{2}(a, q) $, 于是(2.1)式化为(2.2)式.

若(2.2)式的常数因子不是最佳的, 则存在常数$ M_{0}<\frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}} $, 使

取充分小的$ \varepsilon>0 $的及足够大的自然数$ N $, 令$ b_{n}=n^{(-bpq-|\lambda_{2}|\varepsilon)/q}\ (n=1, 2, \cdots) $,

则有

$ K(m, n)=G(m^{\lambda_{1}}, n^{\lambda_{2}}) $, 根据$ K(1, t)t^{-bp} $$ (0, +\infty) $上的递减性, 有

于是可得

先令$ \varepsilon\rightarrow0^{+} $, 然后再令$ N\rightarrow +\infty $, 得

由此得到$ \frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}}\leq M_{0} $, 这与$ M_{0}<\frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}} $相矛盾, 故式(2.2)中的常数因子是最佳的.

必要性: 设(2.1)式的常数因子$ W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q) $是最佳的. 记$ a_{1}=a-\frac{\lambda_{1}c}{pq} $, $ b_{1}=b-\frac{\lambda_{2}c}{pq} $, 则

从而

且计算可得

于是(2.1)式可等价于

$ \begin{eqnarray} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} & \leq& W_{1}^{\frac{1}{p}}(b, p)\left(\frac{\lambda_{2}}{\lambda_{1}}\int_{0}^{+\infty}G(1, t^{\lambda_{2}}) t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}\\ &&\times\|\tilde{a}\|_{p, a_{1}pq-1}\|\tilde{b}\|_{q, b_{1}pq-1}. \end{eqnarray} $

根据假设, (2.3)式的最佳常数因子为

又因为$ \frac{1}{\lambda_{1}}a_{1}q+\frac{1}{\lambda_{2}}b_{1}p=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} $, 且$ G(1, t^{\lambda_{2}})t^{-b_{1}p}=G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}} $$ G(t^{\lambda_{1}}, 1)t^{-a_{1}q}=G(t^{\lambda_{1}}, 1)t^{-aq+\frac{\lambda_{1}c}{p}} $都在$ (0, +\infty) $上递减, 根据前面充分性的证明, (2.3)式的最佳常数因子应为

于是有

$ \begin{eqnarray} \int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}}{\rm d}t =W_{1}^{\frac{1}{p}}(b, p)\left(\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}. \end{eqnarray} $

针对函数$ 1 $$ t^{\frac{\lambda_{2}c}{q}} $, 利用Hölder不等式, 有

$ \begin{eqnarray} &&\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}}{\rm d}t =\int_{0}^{+\infty}1\cdot t^{\frac{\lambda_{2}c}{q}}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\\ &\leq &\left(\int_{0}^{+\infty}1^{p}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\right)^{\frac{1}{p}} \left(\int_{0}^{+\infty}t^{\lambda_{2}c}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\right)^{\frac{1}{q}}\\ &=&W_{1}^{\frac{1}{p}}(b, p)\left(\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}. \end{eqnarray} $

由(2.4)式可知(2.5)式取等号, 再根据Hölder不等式取等号的条件, 可得$ t^{\lambda_{2}c}= $常数, 故$ c=0 $. 定理2.1证毕.

注2.1   记$ \Delta=\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp-(\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}) $, 则$ \Delta=0 $等价于$ a, b $是最佳搭配参数. 称$ \Delta $$ a, b $为最佳搭配参数的判别式.

例2.1   设$ \frac{1}{p}+\frac{1}{q}=1\, (p>1) $, $ \frac{1}{r}+\frac{1}{s}=1\, (r>1) $, $ \lambda_{1}>0 $, $ \lambda_{2}>0 $, $ 0<\lambda<\min\{r(\frac{1}{\lambda_{1}}-1)+1, s(\frac{1}{\lambda_{2}}-1)+1\} $, $ \alpha=\lambda_{1}p(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{r})-1 $, $ \beta=\lambda_{2}q(\frac{1}{\lambda_{2}}-\frac{\lambda-1}{s})-1 $, 试讨论取怎样的搭配参数, 可以由权函数方法得到具有最佳常数因子的Hilbert型级数不等式

$ \begin{eqnarray} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}\frac{\min\{m^{\lambda_{1}}, n^{\lambda_{2}}\}}{(m^{\lambda_{1}}+n^{\lambda_{2}})^{\lambda}}a_{m}b_{n} \leq M_{0}\|\tilde{a}\|_{p, \alpha}\|\tilde{b}\|_{q, \beta}, \end{eqnarray} $

并求出最佳常数因子$ M_{0} $, 其中$ \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha} $, $ \tilde{b}=\{b_{n}\}\in l_{q}^{\beta} $.

$ G(m^{\lambda_{1}}, n^{\lambda_{2}})=\frac{\min\{m^{\lambda_{1}}, n^{\lambda_{2}}\}}{(m^{\lambda_{1}}+n^{\lambda_{2}})^{\lambda}} $, 则$ G(u, v) $$ 1-\lambda $阶齐次非负函数. 令$ apq-1=\alpha $, $ bpq-1=\beta $, 可得$ a=\frac{\lambda_{1}}{q}(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{r}) $, $ b=\frac{\lambda_{2}}{p}(\frac{1}{\lambda_{2}}-\frac{\lambda-1}{s}) $. 经计算可得知$ \Delta=\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp-(1-\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}})=0 $, 故$ a, b $是式(2.6)的最佳搭配参数.

又根据已知条件, 易知$ G(1, t^{\lambda_{2}})t^{-bp} $$ G(t^{\lambda_{1}}, 1)t^{-aq} $都在$ (0, +\infty) $上递减, 且

根据定理1.1, 取搭配参数$ a=\frac{\lambda_{1}}{q}(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{r}) $, $ b=\frac{\lambda_{2}}{p}(\frac{1}{\lambda_{2}}-\frac{\lambda-1}{s}) $. 可得最佳Hilbert型不等式(2.6), 且它的最佳常数因子为

3 应用

根据Hilbert型级数不等式与相应级数算子不等式的关系, 由定理2.1可得到下列定理.

定理3.1   设$ \frac{1}{p}+\frac{1}{q}=1\, (p>1) $, $ a, b\in \mathbb{R} $, $ \lambda_{1}\lambda_{2}>0 $, $ G(u, v) $$ \lambda $阶齐次非负可测函数, $ \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} $, $ G(t^{\lambda_{1}}, 1)t^{-aq}, G(1, t^{\lambda_{2}})t^{-bp} $$ (0, +\infty) $上递减, $ \alpha=apq-1 $, $ \beta=bpq-1 $, 且

收敛, 则算子

$ l_{p}^{\alpha} $$ l_{p}^{\beta(1-p)} $的有界算子, 且$ T $的算子范数为$ \|T\|=(\frac{\lambda_{2}}{\lambda_{1}})^{\frac{1}{q}}W_{1}(b, p) $.

例3.1   设$ \frac{1}{p}+\frac{1}{q}=1\, (p>1) $, $ \frac{1}{r}+\frac{1}{s}=1\, (r>1) $, $ \lambda>0 $, $ \lambda_{1}>0 $, $ \lambda_{2}>0 $, $ \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\geq \max\{\frac{s}{r}\lambda, \frac{r}{s}\lambda\} $, $ -\frac{\lambda}{s}<\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}<\frac{\lambda}{r} $, $ \alpha=\frac{p}{r}(1+\frac{\lambda_{1}}{\lambda_{2}})-\frac{p}{s}\lambda_{1}\lambda-1 $, $ \beta=\frac{q}{s}(1+\frac{\lambda_{2}}{\lambda_{1}})-\frac{q}{r}\lambda_{2}\lambda-1 $, 则级数算子

$ l_{p}^{\alpha} $$ l_{p}^{\beta(1-p)} $的有界算子, 且$ T $的算子范数为

  记$ G(u, v)=\frac{1}{(u+v)^{\lambda}} $, 则$ G(u, v) $$ -\lambda $阶齐次非负函数. 令

则可得$ a=\frac{1}{rq}(1+\frac{\lambda_{1}}{\lambda_{2}})-\frac{1}{sp}\lambda_{1}\lambda $, $ b=\frac{1}{sp}(1+\frac{\lambda_{2}}{\lambda_{1}})-\frac{1}{rp}\lambda_{2}\lambda $, 且有

$ a, b $是最佳搭配参数.

$ \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\geq \max\{\frac{s}{r}\lambda, \frac{r}{s}\lambda\} $, 可得$ \frac{1}{r}\lambda_{2}\lambda-\frac{1}{s}(1+\frac{\lambda_{2}}{\lambda_{1}})\leq0 $, $ \frac{1}{s}\lambda_{1}\lambda-\frac{1}{r}(1+\frac{\lambda_{1}}{\lambda_{2}})\leq0 $, 故

都在$ (0, +\infty) $上递减.

$ -\frac{\lambda}{s}<\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}<\frac{\lambda}{r} $, 可得$ \frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}>0 $, $ \frac{\lambda}{s}+\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}>0 $. 于是有

根据定理3.1, $ T $$ l_{p}^{\alpha} $$ l_{p}^{\beta(1-p)} $的有界算子, 且$ T $的算子范数为

例题得证.

例3.2   设$ \frac{1}{p}+\frac{1}{q}=1\, (p>1) $, $ \frac{1}{r}+\frac{1}{s}=1\, (r>1) $, $ \lambda_{1}>0 $, $ \lambda_{2}>0 $, $ 0<\lambda<\frac{1}{\lambda_{1}s}+\frac{1}{\lambda_{2}r} $, $ 0<\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}<s\lambda $, $ \alpha=p(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}})-1 $, $ \beta=q(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}})-1 $, 则级数算子

$ l_{p}^{\alpha} $$ l_{p}^{\beta(1-p)} $的有界算子, 且$ T $的算子范数为

  记$ G(u, v)=\frac{1}{(1+\frac{u}{v})^{\lambda}} $, 则$ G(u, v) $$ 0 $阶齐次非负函数. 令

则可得$ a=\frac{1}{q}(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}}) $, $ b=\frac{1}{p}(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}}) $, 且$ \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} $, 故$ a, b $是最佳搭配参数.

$ 0<\lambda<\frac{1}{\lambda_{1}s}+\frac{1}{\lambda_{2}r} $, 可得$ \lambda_{2}\lambda-(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}})\leq0 $, $ -(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}})\leq0 $, 故

都在$ (0, +\infty) $上递减.

$ 0<\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}<s\lambda $, 有$ \frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})>0 $, $ \lambda-\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})>0 $, 故

根据定理3.1, $ T $$ l_{p}^{\alpha} $$ l_{p}^{\beta(1-p)} $的有界算子, 且$ T $的算子范数为

例题得证.

参考文献

Brnetic I , Pecaric J .

Generalization of inequality of Hardy-Hilbert's type

Math Inequal Appl, 2004, 7 (2): 217- 225

[本文引用: 1]

洪勇.

关于零阶齐次核的Hardy-Hilbert型不等式

浙江大学学(理学版), 2013, 40 (1): 15- 18

Hong Y .

On Hardy-Hilbert type integral inequality with homogeneous kernel of 0-degree

Journal of Zhejiang University (Seience Edition), 2013, 40 (1): 15- 18

洪勇, 孔荫莹.

含变量可转移函数核的Hilbert型级数不等式

数学物理学报, 2014, 34A (3): 708- 715

URL    

Hong Y , Kong Y Y .

A Hilbert type series inequality with transferable variable kernel

Acta Mathematica Scientia, 2014, 34A (3): 708- 715

URL    

Kuang J C .

On new extensions of Hilbert's integral inequality

Journal of Mathematical Analysis and Applications, 1999, 235: 608- 614

DOI:10.1006/jmaa.1999.6373     

刘琼, 刘英迪.

一个混合核Hilbert型积分不等式及其算子范数表达式

数学物理学报, 2020, 40A (2): 369- 378

DOI:10.3969/j.issn.1003-3998.2020.02.009     

Liu Q , Liu Y D .

A Hilbert-type integral inequality with the mixed kernel and operator expression with norm

Acta Mathematica Scientia, 2020, 40A (2): 369- 378

DOI:10.3969/j.issn.1003-3998.2020.02.009     

Yang B C .

On new generalizations of Hilbert's inequality

Journal of Mathematical Analysis and Applications, 2000, 248 (1): 29- 40

DOI:10.1006/jmaa.2000.6860     

杨必成.

一个新的Hilbert型不等式及其推广

吉林大学学报(理学版), 2005, 43 (5): 580- 584

DOI:10.3321/j.issn:1671-5489.2005.05.005     

Yang B C .

A new Hilbert-type integral inequality and its generalzation

Journal of Jini University(Science Edition), 2005, 43 (5): 580- 584

DOI:10.3321/j.issn:1671-5489.2005.05.005     

杨必成.

关于一个推广的Hardy-Hilbert积分不等式

数学年刊, 2002, 23A (2): 247- 254

DOI:10.3321/j.issn:1000-8134.2002.02.014     

Yang B C .

On an extension of Hardy-Hilbert's inequalty

Chinese Annale of Mathematics, 2002, 23A (2): 247- 254

DOI:10.3321/j.issn:1000-8134.2002.02.014     

高明哲.

Hardy-Riesz拓广的Hilbert不等式的一个改进

数学研究与评论, 1994, 14 (2): 255- 259

URL    

Gao M Z .

An improvement of Hardy-Riesz's extension of the Hilbert inequality

Journal of Mathematical Riesearch and Exposition, 1994, 14 (2): 255- 259

URL    

Rassia M T , Yang B C .

On a Hilbert-type inequality in the plane related to the extended Riemann zeta function

Complex Analysis and Operator Theory, 2019, 13: 1765- 1782

DOI:10.1007/s11785-018-0830-5     

Krnić M , Vuković P .

On multidimensional version of the Hilbert-type inequality

Analysis Mathematical, 2012, 38: 291- 303

DOI:10.1007/s10476-012-0402-2      [本文引用: 1]

洪勇.

准齐次核的Hardy-Hilbert型级数不等式

数学年刊, 2012, 33A (6): 679- 686

DOI:10.3969/j.issn.1000-8314.2012.06.003      [本文引用: 2]

Hong Y .

Hardy-Hilbert type series inequality with a quasi-homegeneour kernel

Chinese Annals of Mathematics, 2012, 33A (6): 679- 686

DOI:10.3969/j.issn.1000-8314.2012.06.003      [本文引用: 2]

洪勇, 温雅敏.

齐次核的Hilbert型级数不等式取最佳常数因子的充要条件

数学年刊, 2016, 37A (3): 329- 336

URL     [本文引用: 2]

Hong Y , Wen Y M .

A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor

Chinese Annals of Mathematics, 2016, 37A (3): 329- 336

URL     [本文引用: 2]

/