Processing math: 0%

数学物理学报, 2022, 42(1): 26-34 doi:

论文

拟齐次核的Hilbert型级数不等式的最佳搭配参数条件及应用

洪勇,1, 陈强,2

1 广州华商学院应用数学系 广州 511300

2 广东第二师范学院计算机学院 广州 510303

The Best Matching Parameters Conditions of Hilbert-Type Series Inequality with Quasi-Homogeneous Kernel and Applications

Hong Yong,1, Chen Qiang,2

1 Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 511300

2 School of Computer, Guangdong University of Education, Guangzhou 510303

收稿日期: 2020-10-28  

基金资助: 国家自然科学基金.  61772140

Received: 2020-10-28  

Fund supported: the NSFC.  61772140

作者简介 About authors

洪勇,E-mail:hongyonggdcc@yeah.net , E-mail:hongyonggdcc@yeah.net

陈强,E-mail:cq_c120m3@163.com , E-mail:cq_c120m3@163.com

Abstract

Choosing a,b as the matching parameters, we can sue the weight function method to obtain Hilbert-type series inequality

m=1n=1K(m,n)ambnM(a,b)
in the paper, the problem of how to choose a, b in order to make M(a, b) the best constant factor in inequality with quasi-homogeneous kernels are discussed, necessary and sufficient conditions are obtained for a, b to the best matching parameters, the formula for the best constant factor is obtained. Finally, their applications to solving operator morn are discussed.

Keywords: Hilbert-type series inequality ; Quasi-homogeneous kernel ; The best constant factor ; The best matching parameter ; Operator norm

PDF (331KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

洪勇, 陈强. 拟齐次核的Hilbert型级数不等式的最佳搭配参数条件及应用. 数学物理学报[J], 2022, 42(1): 26-34 doi:

Hong Yong, Chen Qiang. The Best Matching Parameters Conditions of Hilbert-Type Series Inequality with Quasi-Homogeneous Kernel and Applications. Acta Mathematica Scientia[J], 2022, 42(1): 26-34 doi:

1 引言与预备知识

\frac{1}{p}+\frac{1}{q}=1\ (p>1) , K(m, n)\geq0 , 选择搭配参数 a, b , 利用权函数方法可得下面形式的Hilbert型级数不等式

\begin{equation} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}K(m, n)a_{m}b_{n}\leq M(a, b)\|\tilde{a}\|_{p, \alpha(a, b)}\|\tilde{b}\|_{q, \beta(a, b)}, \end{equation}
(1.1)

其中 \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha(a, b)} , \tilde{b}=\{b_{n}\}\in l_{q}^{\beta(a, b)} , 而

l_{p}^{\alpha(a, b)}=\left\{\tilde{a}=\{a_{m}\}: \|\tilde{a}\|_{p, \alpha(a, b)}=\left(\sum\limits_{m=1}^{\infty}m^{\alpha(a, b)}|a_{m}|^{p}\right)^{\frac{1}{p}}<+\infty\right\}.

一般地, 任意选取的搭配参数 a, b 并不能使式(1.1)的常数因子 M(a, b) 最佳, 针对不同类型的核 K(m, n) , 只有精心选取适当的 a, b , 才有可能得到具有最佳常数因子的Hilbert型不等式(1.1). 如何选取最佳的搭配参数来获得具有最佳常数因子的Hilbert型不等式一直是Hilbert型不等式研究的重要课题.

T 为级数算子

T(\tilde{a})_{n}=\sum\limits_{m=1}^{\infty}K(m, n)a_{m}, \ \ \tilde{a}={a_{m}}\in l_{p}^{\alpha(a, b)},

根据Hilbert型不等式的基本理论, 式(1.1)等价于算子不等式

\|T(\tilde{a})\|_{p, \beta(a, b)(1-p)}\leq M(a, b)\|\tilde{a}\|_{p, \alpha(a, b)}.

因此选取最佳搭配参数, 实质上就是讨论算子 T: l_{p}^{\alpha(a, b)}\rightarrow l_{p}^{\beta(a, b)(1-p)} 的算子范数.

国内外的学者凭借自身的经验和实分析技巧, 针对各种各样的核, 已获得了许多具有最佳常数因子的Hilbert型不等式[1-11]. 显然, 寻求最佳搭配参数 a, b 所满足的条件, 探究其基本特征是一件很有意义的工作.

\lambda_{1}\lambda_{2}>0 , G(u, v) \lambda 阶齐次函数, 则称 K(m, n)=G(m^{\lambda_{1}}, n^{\lambda_{2}}) 为拟齐次函数. 显然对于 t>0 , 有

K(tm, n)=t^{\lambda_{1}\lambda}K(m, t^{-\frac{\lambda_{1}}{\lambda_{2}}}n), \ \ \ K(m, tn)=t^{\lambda_{2}\lambda}K(t^{-\frac{\lambda_{2}}{\lambda_{1}}}m, n).

2012年, 文献[12]针对 \lambda=1 情况下的拟齐次核获得了最佳搭配参数 a, b 的充分条件是 \lambda_{1}bp+\lambda_{2}aq=\lambda_{1}\lambda_{2}+\lambda_{1}+\lambda_{2} , 但没有讨论此条件是否必要, 而且还限制了 a>0 , b>0 . 2016年, 文献[13]针对齐次核, 在更宽泛的条件下证明了 a, b 为最佳搭配参数的充分必要条件是 aq+bp=\lambda+2 , 结果比较完美. 本文将在文献[12, 13]的基础上, 讨论一般情况下针对拟齐次核的Hilbert级数不等式的最佳搭配参数, 得到了 a, b 为最佳搭配参数的充分必要条件.

引理1.1   设 \frac{1}{p}+\frac{1}{q}=1\, (p>1) , a, b\in \mathbb{R} , \lambda_{1}\lambda_{2}>0 , G(u, v) \lambda 阶齐次非负可测函数, K(m, n)=G(m^{\lambda_{1}}, n^{\lambda_{2}}) , \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} , K(t, 1)t^{-aq} K(1, t)t^{-bp} 都在 (0, +\infty) 上递减, 记

W_{1}(b, p)=\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}\, {\rm d}t, \ \ W_{2}(a, q)=\int_{0}^{+\infty}G(t^{\lambda_{1}}, 1)t^{-aq}\, {\rm d}t,

\lambda_{2}W_{1}(b, p)=\lambda_{1}W_{2}(a, q) , 且

\omega_{1}(b, p, m)=\sum\limits_{n=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})n^{-bp}\leq m^{\lambda_{1}(\lambda-\frac{1}{\lambda_{2}}bp+\frac{1}{\lambda_{2}})}W_{1}(b, p),

\omega_{2}(a, q, n)=\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})m^{-aq}\leq n^{\lambda_{2}(\lambda-\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{1}})}W_{2}(a, q).

  作积分变换 t^{-\frac{\lambda_{2}}{\lambda_{1}}}=u 并根据 \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} , 有

\begin{eqnarray*} W_{1}(b, p)&=&\int_{0}^{+\infty}K(1, t)t^{-bp}\, {\rm d}t=\int_{0}^{+\infty} K(t^{-\frac{\lambda_{2}}{\lambda_{1}}}, 1)t^{\lambda_{2}\lambda-bp}\, {\rm d}t\\ & =&\frac{\lambda_{1}}{\lambda_{2}}\int_{0}^{+\infty}K(u, 1) u^{-\lambda_{1}\lambda+\frac{\lambda_{1}}{\lambda_{2}}bp-\frac{\lambda_{1}}{\lambda_{2}}-1}\, {\rm d}u =\frac{\lambda_{1}}{\lambda_{2}}\int_{0}^{+\infty}K(u, 1)u^{-aq}\, {\rm d}u\\ & =&\frac{\lambda_{1}}{\lambda_{2}}W_{2}(a, q), \end{eqnarray*}

\lambda_{2}W_{1}(b, p)=\lambda_{1}W_{2}(a, q) .

根据 K(1, t)t^{-bp} (0, +\infty) 上递减, 有

\begin{eqnarray*} \omega_{1}(b, p, m)&=&\sum\limits_{n=1}^{\infty}K(m, n)n^{-bp}=m^{\lambda_{1}\lambda}\sum\limits_{n=1}^{\infty}K(1, m^{-\frac{\lambda_{1}}{\lambda_{2}}}n)n^{-bp}\\ & \leq& m^{\lambda_{1}\lambda-\frac{\lambda_{1}}{\lambda_{2}}bp}\int_{0}^{+\infty} K(1, m^{-\frac{\lambda_{1}}{\lambda_{2}}}u)(m^{-\frac{\lambda_{1}}{\lambda_{2}}}u)^{-bp}{\rm d}u\\ & =&m^{\lambda_{1}\lambda-\frac{\lambda_{1}}{\lambda_{2}}bp+\frac{\lambda_{1}}{\lambda_{2}}}\int_{0}^{+\infty} K(1, t)t^{-bp}{\rm d}t=m^{\lambda_{1}(\lambda-\frac{1}{\lambda_{2}}bp+\frac{1}{\lambda_{2}})}W_{1}(b, p). \end{eqnarray*}

同理, 根据 K(t, 1)t^{-aq} (0, +\infty) 上递减, 可证 \omega_{2}(a, q, n)\leq n^{\lambda_{2}(\lambda-\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{1}})}W_{2}(a, q) .

2 最佳搭配参数的充要条件

定理2.1   设 \frac{1}{p}+\frac{1}{q}=1\, (p>1) , a, b\in \mathbb{R} , \lambda_{1}\lambda_{2}>0 , G(u, v) \lambda 阶齐次非负可测函数, \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp-(\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}})=c , G(1, t^{\lambda_{2}})t^{-bp}, G(t^{\lambda_{1}}, 1)t^{-aq}, G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}} G(t^{\lambda_{1}}, 1)t^{-aq+\frac{\lambda_{1}c}{p}} 都在 (0, +\infty) 上递减, 且

W_{1}(b, p)=\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}\, {\rm d}t, \ \ W_{2}(a, q)=\int_{0}^{+\infty}G(t^{\lambda_{1}}, 1)t^{-aq}\, {\rm d}t

收敛, 那么

{\rm (i)} \alpha=\lambda_{1}[\lambda+\frac{1}{\lambda_{2}}+p(\frac{a}{\lambda_{1}}-\frac{b}{\lambda_{2}})] , \beta=\lambda_{2}[\lambda+\frac{1}{\lambda_{1}}+q(\frac{b}{\lambda_{2}}-\frac{a}{\lambda_{1}})] , 有

\begin{equation} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} \leq W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q)\|\tilde{a}\|_{p, \alpha}\|\tilde{b}\|_{q, \beta}, \end{equation}
(2.1)

其中 \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha} , \tilde{b}=\{b_{n}\}\in l_{}^{\beta} .

{\rm (ii)} 当且仅当 c=0 , 即 \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} 时, (2.1)式中常数因子 W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q) 是最佳的, 且当 c=0 时, (2.1)式化为

\begin{equation} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} \leq \frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}}\|\tilde{a}\|_{p, apq-1}\|\tilde{b}\|_{q, bpq-1}, \end{equation}
(2.2)

其中 W_{0}=|\lambda_{1}|W_{2}(a, q)=|\lambda_{2}|W_{1}(b, p) .

  (i) 选取 a, b 为搭配参数, 根据Hölder不等式及引理1.1, 有

\begin{eqnarray*} &&\sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} \leq \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}\left(\frac{m^{a}}{n^{b}}|a_{m}|\right)\left(\frac{n^{b}}{m^{a}}|b_{n}|\right)G(m^{\lambda_{1}}, n^{\lambda_{2}})\\ & \leq&\left(\sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}\left(\frac{m^{ap}}{n^{bp}}|a_{m}|^{p}\right)G(m^{\lambda_{1}}, n^{\lambda_{2}})\right)^{\frac{1}{p}} \left(\sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}\left(\frac{n^{bq}}{m^{aq}}|b_{n}|^{q}\right)G(m^{\lambda_{1}}, n^{\lambda_{2}})\right)^{\frac{1}{q}}\\ & =&\left(\sum\limits_{m=1}^{\infty}m^{ap}|a_{m}|^{p}\omega_{1}(b, p, m)\right)^{\frac{1}{p}} \left(\sum\limits_{n=1}^{\infty}n^{bq}|b_{n}|^{q}\omega_{2}(a, q, n)\right)^{\frac{1}{p}}\\ & \leq& W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q) \left(\sum\limits_{m=1}^{\infty}m^{ap+\lambda_{1}(\lambda-\frac{1}{\lambda_{2}}bp+\frac{1}{\lambda_{2}})}|a_{m}|^{p}\right)^{\frac{1}{p}} \left(\sum\limits_{n=1}^{\infty}n^{bq+\lambda_{2}(\lambda-\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{1}})}|b_{n}|^{q}\right)^{\frac{1}{q}}\\ & =&W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q)\|\tilde{a}\|_{p, \alpha}\|\tilde{b}\|_{q, \beta}, \end{eqnarray*}

故(2.2)式成立.

(ii) 充分性: 设 c=0 , 则 \alpha=apq-1 , \beta=bpq-1 . 根据引理1.1, 有 \lambda_{2}W_{1}(b, p)=\lambda_{1}W_{2}(a, q) , 于是(2.1)式化为(2.2)式.

若(2.2)式的常数因子不是最佳的, 则存在常数 M_{0}<\frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}} , 使

\begin{eqnarray*} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} \leq M_{0}\|\tilde{a}\|_{p, apq-1}\|\tilde{b}\|_{q, bpq-1}. \end{eqnarray*}

取充分小的 \varepsilon>0 的及足够大的自然数 N , 令 b_{n}=n^{(-bpq-|\lambda_{2}|\varepsilon)/q}\ (n=1, 2, \cdots) ,

a_{m}= \left\{\begin{array}{ll} 0, & m=1, 2, \cdots, N-1, \\ m^{\frac{-apq-|\lambda_{1}|\varepsilon}{p}}, & m=N, N+1, \cdots \end{array}\right.

则有

\begin{eqnarray*} \|\tilde{a}\|_{p, apq-1}\|\tilde{b}\|_{q, bpq-1} &=&\left(\sum\limits_{m=N}^{\infty}m^{-1-|\lambda_{1}|\varepsilon}\right)^{\frac{1}{p}} \left(\sum\limits_{n=1}^{\infty}n^{-1-|\lambda_{2}|\varepsilon}\right)^{\frac{1}{q}}\\ &\leq& \left(1+\int_{1}^{+\infty}t^{-1-|\lambda_{1}|\varepsilon}{\rm d}t\right)^{\frac{1}{p}} \left(1+\int_{1}^{+\infty}t^{-1-|\lambda_{2}|\varepsilon}{\rm d}t\right)^{\frac{1}{q}}\\ &=&\frac{1}{\varepsilon|\lambda_{1}|^{\frac{1}{p}}|\lambda_{2}|^{\frac{1}{q}}} \left(1+|\lambda_{1}|\varepsilon\right)^{\frac{1}{p}}\left(1+|\lambda_{2}|\varepsilon\right)^{\frac{1}{q}}. \end{eqnarray*}

K(m, n)=G(m^{\lambda_{1}}, n^{\lambda_{2}}) , 根据 K(1, t)t^{-bp} (0, +\infty) 上的递减性, 有

\begin{eqnarray*} && \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} =\sum\limits_{m=N}^{\infty}m^{-aq-\frac{|\lambda_{1}|\varepsilon}{p}}\left(\sum\limits_{n=1}^{\infty}K(m, n)n^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}\right)\\ &=&\sum\limits_{m=N}^{\infty}m^{\lambda_{1}\lambda-aq-\frac{|\lambda_{1}|\varepsilon}{p}} \left(\sum\limits_{n=1}^{\infty}K(1, m^{-\frac{\lambda_{1}}{\lambda_{2}}}n)n^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}\right)\\ &=&\sum\limits_{m=N}^{\infty}m^{\lambda_{1}\lambda-aq-\frac{|\lambda_{1}|\varepsilon}{p}-\frac{\lambda_{1}}{\lambda_{2}}(bp+\frac{|\lambda_{2}|\varepsilon}{q})} \left(\sum\limits_{n=1}^{\infty}K(1, m^{-\frac{\lambda_{1}}{\lambda_{2}}}n) (m^{-\frac{\lambda_{1}}{\lambda_{2}}}n)^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}\right)\\ &\geq& \sum\limits_{m=N}^{\infty}m^{\lambda_{1}\lambda-aq-\frac{|\lambda_{1}|\varepsilon}{p}-\frac{\lambda_{1}}{\lambda_{2}}(bp+\frac{|\lambda_{2}|\varepsilon}{q})} \left(\int_{1}^{+\infty}K(1, m^{-\frac{\lambda_{1}}{\lambda_{2}}}u) (m^{-\frac{\lambda_{1}}{\lambda_{2}}}u)^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}{\rm d}u\right)\\ &=&\sum\limits_{m=N}^{\infty}m^{\lambda_{1}\lambda-aq-\frac{|\lambda_{1}|\varepsilon}{p}- \frac{\lambda_{1}}{\lambda_{2}}(bp+\frac{|\lambda_{2}|\varepsilon}{q})+\frac{\lambda_{1}}{\lambda_{2}}} \left(\int_{m^{-\frac{\lambda_{1}}{\lambda_{2}}}}^{+\infty}K(1, t)t^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}{\rm d}t\right)\\ &=&\sum\limits_{m=N}^{\infty}m^{-1-|\lambda_{1}|\varepsilon} \left(\int_{m^{-\frac{\lambda_{1}}{\lambda_{2}}}}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}{\rm d}t\right)\\ &\geq& \int_{N}^{\infty}t^{-1-|\lambda_{1}|\varepsilon}{\rm d}t \int_{N^{-\frac{\lambda_{1}}{\lambda_{2}}}}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}{\rm d}t\\ &=&\frac{1}{|\lambda_{1}|\varepsilon}N^{-|\lambda_{1}|\varepsilon} \int_{N^{-\frac{\lambda_{1}}{\lambda_{2}}}}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}{\rm d}t. \end{eqnarray*}

于是可得

\begin{eqnarray*} \frac{1}{|\lambda_{1}|}N^{-|\lambda_{1}|\varepsilon} \int_{N^{-\frac{\lambda_{1}}{\lambda_{2}}}}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp-\frac{|\lambda_{2}|\varepsilon}{q}}{\rm d}t \leq \frac{M_{0}}{|\lambda_{1}|^{\frac{1}{p}}|\lambda_{2}|^{\frac{1}{q}}} \left(1+|\lambda_{1}|\varepsilon\right)^{\frac{1}{p}}\left(1+|\lambda_{2}|\varepsilon\right)^{\frac{1}{q}}. \end{eqnarray*}

先令 \varepsilon\rightarrow0^{+} , 然后再令 N\rightarrow +\infty , 得

\begin{eqnarray*} \frac{1}{|\lambda_{1}|}\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t \leq \frac{M_{0}}{|\lambda_{1}|^{\frac{1}{p}}|\lambda_{2}|^{\frac{1}{q}}}. \end{eqnarray*}

由此得到 \frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}}\leq M_{0} , 这与 M_{0}<\frac{W_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}} 相矛盾, 故式(2.2)中的常数因子是最佳的.

必要性: 设(2.1)式的常数因子 W_{1}^{\frac{1}{p}}(b, p)W_{2}^{\frac{1}{q}}(a, q) 是最佳的. 记 a_{1}=a-\frac{\lambda_{1}c}{pq} , b_{1}=b-\frac{\lambda_{2}c}{pq} , 则

\frac{1}{\lambda_{1}}a_{1}q+\frac{1}{\lambda_{2}}b_{1}p=\frac{1}{\lambda_{1}}q-\frac{c}{p}+\frac{1}{\lambda_{2}}bp-\frac{c}{q}=\lambda+ \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}},

从而

\alpha=\lambda_{1}\left[\lambda+\frac{1}{\lambda_{2}}+p(\frac{a}{\lambda_{1}}-\frac{b}{\lambda_{2}})\right] =\lambda_{1}\left[\lambda+\frac{1}{\lambda_{2}}+p(\frac{a_{1}}{\lambda_{1}}-\frac{b_{1}}{\lambda_{2}})\right]=a_{1}pq-1,

\beta=\lambda_{2}\left[\lambda+\frac{1}{\lambda_{1}}+q(\frac{b}{\lambda_{2}}-\frac{a}{\lambda_{1}})\right] =\lambda_{2}\left[\lambda+\frac{1}{\lambda_{1}}+q(\frac{b_{1}}{\lambda_{2}}-\frac{a_{1}}{\lambda_{1}})\right]=b_{1}pq-1,

且计算可得

W_{2}(a, q)=\int_{0}^{+\infty}G(t^{\lambda_{1}}, 1)t^{-aq}{\rm d}t =\frac{\lambda_{2}}{\lambda_{1}}\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\lambda_{2}c}{\rm d}t.

于是(2.1)式可等价于

\begin{eqnarray} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}b_{n} & \leq& W_{1}^{\frac{1}{p}}(b, p)\left(\frac{\lambda_{2}}{\lambda_{1}}\int_{0}^{+\infty}G(1, t^{\lambda_{2}}) t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}\\ &&\times\|\tilde{a}\|_{p, a_{1}pq-1}\|\tilde{b}\|_{q, b_{1}pq-1}. \end{eqnarray}
(2.3)

根据假设, (2.3)式的最佳常数因子为

W_{1}^{\frac{1}{p}}(b, p)\left(\frac{\lambda_{2}}{\lambda_{1}}\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}.

又因为 \frac{1}{\lambda_{1}}a_{1}q+\frac{1}{\lambda_{2}}b_{1}p=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} , 且 G(1, t^{\lambda_{2}})t^{-b_{1}p}=G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}} G(t^{\lambda_{1}}, 1)t^{-a_{1}q}=G(t^{\lambda_{1}}, 1)t^{-aq+\frac{\lambda_{1}c}{p}} 都在 (0, +\infty) 上递减, 根据前面充分性的证明, (2.3)式的最佳常数因子应为

\begin{eqnarray*} \frac{\bar{W}_{0}}{|\lambda_{1}|^{\frac{1}{q}}|\lambda_{2}|^{\frac{1}{p}}} =\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\frac{1}{q}}\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-b_{1}p}{\rm d}t =\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\frac{1}{q}}\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}}{\rm d}t. \end{eqnarray*}

于是有

\begin{eqnarray} \int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}}{\rm d}t =W_{1}^{\frac{1}{p}}(b, p)\left(\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}. \end{eqnarray}
(2.4)

针对函数 1 t^{\frac{\lambda_{2}c}{q}} , 利用Hölder不等式, 有

\begin{eqnarray} &&\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\frac{\lambda_{2}c}{q}}{\rm d}t =\int_{0}^{+\infty}1\cdot t^{\frac{\lambda_{2}c}{q}}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\\ &\leq &\left(\int_{0}^{+\infty}1^{p}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\right)^{\frac{1}{p}} \left(\int_{0}^{+\infty}t^{\lambda_{2}c}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\right)^{\frac{1}{q}}\\ &=&W_{1}^{\frac{1}{p}}(b, p)\left(\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp+\lambda_{2}c}{\rm d}t\right)^{\frac{1}{q}}. \end{eqnarray}
(2.5)

由(2.4)式可知(2.5)式取等号, 再根据Hölder不等式取等号的条件, 可得 t^{\lambda_{2}c}= 常数, 故 c=0 . 定理2.1证毕.

注2.1   记 \Delta=\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp-(\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}) , 则 \Delta=0 等价于 a, b 是最佳搭配参数. 称 \Delta a, b 为最佳搭配参数的判别式.

例2.1   设 \frac{1}{p}+\frac{1}{q}=1\, (p>1) , \frac{1}{r}+\frac{1}{s}=1\, (r>1) , \lambda_{1}>0 , \lambda_{2}>0 , 0<\lambda<\min\{r(\frac{1}{\lambda_{1}}-1)+1, s(\frac{1}{\lambda_{2}}-1)+1\} , \alpha=\lambda_{1}p(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{r})-1 , \beta=\lambda_{2}q(\frac{1}{\lambda_{2}}-\frac{\lambda-1}{s})-1 , 试讨论取怎样的搭配参数, 可以由权函数方法得到具有最佳常数因子的Hilbert型级数不等式

\begin{eqnarray} \sum\limits_{n=1}^{\infty}\sum\limits_{m=1}^{\infty}\frac{\min\{m^{\lambda_{1}}, n^{\lambda_{2}}\}}{(m^{\lambda_{1}}+n^{\lambda_{2}})^{\lambda}}a_{m}b_{n} \leq M_{0}\|\tilde{a}\|_{p, \alpha}\|\tilde{b}\|_{q, \beta}, \end{eqnarray}
(2.6)

并求出最佳常数因子 M_{0} , 其中 \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha} , \tilde{b}=\{b_{n}\}\in l_{q}^{\beta} .

G(m^{\lambda_{1}}, n^{\lambda_{2}})=\frac{\min\{m^{\lambda_{1}}, n^{\lambda_{2}}\}}{(m^{\lambda_{1}}+n^{\lambda_{2}})^{\lambda}} , 则 G(u, v) 1-\lambda 阶齐次非负函数. 令 apq-1=\alpha , bpq-1=\beta , 可得 a=\frac{\lambda_{1}}{q}(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{r}) , b=\frac{\lambda_{2}}{p}(\frac{1}{\lambda_{2}}-\frac{\lambda-1}{s}) . 经计算可得知 \Delta=\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp-(1-\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}})=0 , 故 a, b 是式(2.6)的最佳搭配参数.

又根据已知条件, 易知 G(1, t^{\lambda_{2}})t^{-bp} G(t^{\lambda_{1}}, 1)t^{-aq} 都在 (0, +\infty) 上递减, 且

\begin{eqnarray*} W_{0}&=&|\lambda_{2}|W_{1}(b, p)=\lambda_{2}\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t\\ &=&\int_{0}^{+\infty}G(1, u)u^{-\frac{1}{\lambda_{1}}bp+\frac{1}{\lambda_{2}}-1}{\rm d}u =\int_{0}^{+\infty}\frac{\min\{1, u\}}{(1+u)^{\lambda}}u^{\frac{\lambda-1}{s}-1}{\rm d}u\\ &=&\int_{0}^{1}\frac{1}{(1+t)^{\lambda}}\left(t^{\frac{1}{s}(\lambda-1)}+t^{\frac{1}{r}(\lambda-1)}\right){\rm d}t<+\infty. \end{eqnarray*}

根据定理1.1, 取搭配参数 a=\frac{\lambda_{1}}{q}(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{r}) , b=\frac{\lambda_{2}}{p}(\frac{1}{\lambda_{2}}-\frac{\lambda-1}{s}) . 可得最佳Hilbert型不等式(2.6), 且它的最佳常数因子为

M_{0}=\frac{1}{\lambda_{1}^{\frac{1}{q}}\lambda_{2}^{\frac{1}{p}}} \int_{0}^{1}\frac{1}{(1+t)^{\lambda}}\left(t^{\frac{1}{s}(\lambda-1)}+t^{\frac{1}{r}(\lambda-1)}\right){\rm d}t.

3 应用

根据Hilbert型级数不等式与相应级数算子不等式的关系, 由定理2.1可得到下列定理.

定理3.1   设 \frac{1}{p}+\frac{1}{q}=1\, (p>1) , a, b\in \mathbb{R} , \lambda_{1}\lambda_{2}>0 , G(u, v) \lambda 阶齐次非负可测函数, \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} , G(t^{\lambda_{1}}, 1)t^{-aq}, G(1, t^{\lambda_{2}})t^{-bp} (0, +\infty) 上递减, \alpha=apq-1 , \beta=bpq-1 , 且

W_{1}(b, p)=\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t

收敛, 则算子

T(\tilde{a})_{n}=\sum\limits_{m=1}^{\infty}G(m^{\lambda_{1}}, n^{\lambda_{2}})a_{m}, \ \ \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha}

l_{p}^{\alpha} l_{p}^{\beta(1-p)} 的有界算子, 且 T 的算子范数为 \|T\|=(\frac{\lambda_{2}}{\lambda_{1}})^{\frac{1}{q}}W_{1}(b, p) .

例3.1   设 \frac{1}{p}+\frac{1}{q}=1\, (p>1) , \frac{1}{r}+\frac{1}{s}=1\, (r>1) , \lambda>0 , \lambda_{1}>0 , \lambda_{2}>0 , \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\geq \max\{\frac{s}{r}\lambda, \frac{r}{s}\lambda\} , -\frac{\lambda}{s}<\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}<\frac{\lambda}{r} , \alpha=\frac{p}{r}(1+\frac{\lambda_{1}}{\lambda_{2}})-\frac{p}{s}\lambda_{1}\lambda-1 , \beta=\frac{q}{s}(1+\frac{\lambda_{2}}{\lambda_{1}})-\frac{q}{r}\lambda_{2}\lambda-1 , 则级数算子

T(\tilde{a})_{n}=\sum\limits_{m=1}^{\infty}\frac{1}{(m^{\lambda_{1}}+n^{\lambda_{2}})^{\lambda}}a_{m}, \ \ \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha}

l_{p}^{\alpha} l_{p}^{\beta(1-p)} 的有界算子, 且 T 的算子范数为

\|T\|=\frac{1}{\lambda_{1}^{\frac{1}{q}}\lambda_{2}^{\frac{1}{p}}} B\left(\frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}, \frac{\lambda}{s}+\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}\right).

  记 G(u, v)=\frac{1}{(u+v)^{\lambda}} , 则 G(u, v) -\lambda 阶齐次非负函数. 令

apq-1=\alpha=\frac{p}{r}(1+\frac{\lambda_{1}}{\lambda_{2}})-\frac{p}{s}\lambda_{1}\lambda-1, \ \ bpq-1=\beta=\frac{q}{s}(1+\frac{\lambda_{2}}{\lambda_{1}})-\frac{q}{r}\lambda_{2}\lambda-1,

则可得 a=\frac{1}{rq}(1+\frac{\lambda_{1}}{\lambda_{2}})-\frac{1}{sp}\lambda_{1}\lambda , b=\frac{1}{sp}(1+\frac{\lambda_{2}}{\lambda_{1}})-\frac{1}{rp}\lambda_{2}\lambda , 且有

\frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=-\lambda+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}},

a, b 是最佳搭配参数.

\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\geq \max\{\frac{s}{r}\lambda, \frac{r}{s}\lambda\} , 可得 \frac{1}{r}\lambda_{2}\lambda-\frac{1}{s}(1+\frac{\lambda_{2}}{\lambda_{1}})\leq0 , \frac{1}{s}\lambda_{1}\lambda-\frac{1}{r}(1+\frac{\lambda_{1}}{\lambda_{2}})\leq0 , 故

G(1, t^{\lambda_{2}})t^{-bp}=\frac{1}{(1+t^{\lambda_{2}})^{\lambda}} t^{\frac{1}{r}\lambda_{2}\lambda-\frac{1}{s}(1+\frac{\lambda_{2}}{\lambda_{1}})},

G(t^{\lambda_{1}}, 1)t^{-aq}=\frac{1}{(t^{\lambda_{1}}+1)^{\lambda}} t^{\frac{1}{s}\lambda_{1}\lambda-\frac{1}{r}(1+\frac{\lambda_{1}}{\lambda_{2}})}

都在 (0, +\infty) 上递减.

-\frac{\lambda}{s}<\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}<\frac{\lambda}{r} , 可得 \frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}>0 , \frac{\lambda}{s}+\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}>0 . 于是有

\begin{eqnarray*} W_{1}(b, p)&=&\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t =\int_{0}^{+\infty}\frac{1}{(1+t^{\lambda_{2}})^{\lambda}}t^{-bp}{\rm d}t\\ &=&\frac{1}{\lambda_{2}}\int_{0}^{+\infty}\frac{1}{(1+u)^{\lambda}}u^{-\frac{1}{\lambda_{2}}bp+\frac{1}{\lambda_{2}}-1}{\rm d}u =\frac{1}{\lambda_{2}}\int_{0}^{+\infty}\frac{1}{(1+u)^{\lambda}} u^{\frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}-1}{\rm d}u\\ &=&\frac{1}{\lambda_{2}}B\left(\frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}, \lambda-\frac{\lambda}{r}+\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}\right)\\ &=&\frac{1}{\lambda_{2}}B\left(\frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}, \frac{\lambda}{s}+\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}\right)<+\infty. \end{eqnarray*}

根据定理3.1, T l_{p}^{\alpha} l_{p}^{\beta(1-p)} 的有界算子, 且 T 的算子范数为

\|T\|=(\frac{\lambda_{2}}{\lambda_{1}})^{\frac{1}{q}}W_{1}(b, p)=\frac{1}{\lambda_{1}^{\frac{1}{q}}\lambda_{2}^{\frac{1}{p}}} B\left(\frac{\lambda}{r}-\frac{1}{\lambda_{1}r}+\frac{1}{\lambda_{2}s}, \frac{\lambda}{s}+\frac{1}{\lambda_{1}r}-\frac{1}{\lambda_{2}s}\right).

例题得证.

例3.2   设 \frac{1}{p}+\frac{1}{q}=1\, (p>1) , \frac{1}{r}+\frac{1}{s}=1\, (r>1) , \lambda_{1}>0 , \lambda_{2}>0 , 0<\lambda<\frac{1}{\lambda_{1}s}+\frac{1}{\lambda_{2}r} , 0<\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}<s\lambda , \alpha=p(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}})-1 , \beta=q(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}})-1 , 则级数算子

T(\tilde{a})_{n}=\sum\limits_{m=1}^{\infty}\frac{a_{m}}{(1+\frac{m^{\lambda_{1}}}{n^{\lambda_{2}}})^{\lambda}}, \ \ \tilde{a}=\{a_{m}\}\in l_{p}^{\alpha}

l_{p}^{\alpha} l_{p}^{\beta(1-p)} 的有界算子, 且 T 的算子范数为

\|T\|=\frac{1}{\lambda_{1}^{\frac{1}{q}}\lambda_{2}^{\frac{1}{p}}} B\left(\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}), \lambda-\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})\right).

  记 G(u, v)=\frac{1}{(1+\frac{u}{v})^{\lambda}} , 则 G(u, v) 0 阶齐次非负函数. 令

apq-1=\alpha=p(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}})-1, \ \ bpq-1=\beta=q(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}})-1,

则可得 a=\frac{1}{q}(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}}) , b=\frac{1}{p}(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}}) , 且 \frac{1}{\lambda_{1}}aq+\frac{1}{\lambda_{2}}bp=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} , 故 a, b 是最佳搭配参数.

0<\lambda<\frac{1}{\lambda_{1}s}+\frac{1}{\lambda_{2}r} , 可得 \lambda_{2}\lambda-(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}})\leq0 , -(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}})\leq0 , 故

G(1, t^{\lambda_{2}})t^{-bp}=\frac{1}{(1+t^{\lambda_{2}})^{\lambda}} t^{\lambda_{2}\lambda-(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{1}}{\lambda_{2}})},

G(t^{\lambda_{1}}, 1)t^{-aq}=\frac{1}{(1+t^{\lambda_{1}})^{\lambda}}t^{-(\frac{1}{r}+\frac{1}{s}\frac{\lambda_{2}}{\lambda_{1}})}

都在 (0, +\infty) 上递减.

0<\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}<s\lambda , 有 \frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})>0 , \lambda-\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})>0 , 故

\begin{eqnarray*} W_{1}(b, p)&=&\int_{0}^{+\infty}G(1, t^{\lambda_{2}})t^{-bp}{\rm d}t =\int_{0}^{+\infty}\frac{1}{(1+t^{-\lambda_{2}})^{\lambda}}t^{-bp}{\rm d}t\\ &=&\frac{1}{\lambda_{2}}\int_{0}^{+\infty}\frac{1}{(1+u)^{\lambda}}u^{\frac{1}{\lambda_{2}}bp-\frac{1}{\lambda_{2}}-1}{\rm d}u =\frac{1}{\lambda_{2}}\int_{0}^{+\infty}\frac{1}{(1+u)^{\lambda}} u^{\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})-1}{\rm d}u\\ &=&\frac{1}{\lambda_{2}}B\left(\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}), \lambda-\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})\right)<+\infty. \end{eqnarray*}

根据定理3.1, T l_{p}^{\alpha} l_{p}^{\beta(1-p)} 的有界算子, 且 T 的算子范数为

\|T\|=(\frac{\lambda_{2}}{\lambda_{1}})^{\frac{1}{q}}W_{1}(b, p)=\frac{1}{\lambda_{1}^{\frac{1}{q}}\lambda_{2}^{\frac{1}{p}}} B\left(\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}), \lambda-\frac{1}{s}(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}})\right).

例题得证.

参考文献

Brnetic I , Pecaric J .

Generalization of inequality of Hardy-Hilbert's type

Math Inequal Appl, 2004, 7 (2): 217- 225

[本文引用: 1]

洪勇.

关于零阶齐次核的Hardy-Hilbert型不等式

浙江大学学(理学版), 2013, 40 (1): 15- 18

Hong Y .

On Hardy-Hilbert type integral inequality with homogeneous kernel of 0-degree

Journal of Zhejiang University (Seience Edition), 2013, 40 (1): 15- 18

洪勇, 孔荫莹.

含变量可转移函数核的Hilbert型级数不等式

数学物理学报, 2014, 34A (3): 708- 715

URL    

Hong Y , Kong Y Y .

A Hilbert type series inequality with transferable variable kernel

Acta Mathematica Scientia, 2014, 34A (3): 708- 715

URL    

Kuang J C .

On new extensions of Hilbert's integral inequality

Journal of Mathematical Analysis and Applications, 1999, 235: 608- 614

DOI:10.1006/jmaa.1999.6373     

刘琼, 刘英迪.

一个混合核Hilbert型积分不等式及其算子范数表达式

数学物理学报, 2020, 40A (2): 369- 378

DOI:10.3969/j.issn.1003-3998.2020.02.009     

Liu Q , Liu Y D .

A Hilbert-type integral inequality with the mixed kernel and operator expression with norm

Acta Mathematica Scientia, 2020, 40A (2): 369- 378

DOI:10.3969/j.issn.1003-3998.2020.02.009     

Yang B C .

On new generalizations of Hilbert's inequality

Journal of Mathematical Analysis and Applications, 2000, 248 (1): 29- 40

DOI:10.1006/jmaa.2000.6860     

杨必成.

一个新的Hilbert型不等式及其推广

吉林大学学报(理学版), 2005, 43 (5): 580- 584

DOI:10.3321/j.issn:1671-5489.2005.05.005     

Yang B C .

A new Hilbert-type integral inequality and its generalzation

Journal of Jini University(Science Edition), 2005, 43 (5): 580- 584

DOI:10.3321/j.issn:1671-5489.2005.05.005     

杨必成.

关于一个推广的Hardy-Hilbert积分不等式

数学年刊, 2002, 23A (2): 247- 254

DOI:10.3321/j.issn:1000-8134.2002.02.014     

Yang B C .

On an extension of Hardy-Hilbert's inequalty

Chinese Annale of Mathematics, 2002, 23A (2): 247- 254

DOI:10.3321/j.issn:1000-8134.2002.02.014     

高明哲.

Hardy-Riesz拓广的Hilbert不等式的一个改进

数学研究与评论, 1994, 14 (2): 255- 259

URL    

Gao M Z .

An improvement of Hardy-Riesz's extension of the Hilbert inequality

Journal of Mathematical Riesearch and Exposition, 1994, 14 (2): 255- 259

URL    

Rassia M T , Yang B C .

On a Hilbert-type inequality in the plane related to the extended Riemann zeta function

Complex Analysis and Operator Theory, 2019, 13: 1765- 1782

DOI:10.1007/s11785-018-0830-5     

Krnić M , Vuković P .

On multidimensional version of the Hilbert-type inequality

Analysis Mathematical, 2012, 38: 291- 303

DOI:10.1007/s10476-012-0402-2      [本文引用: 1]

洪勇.

准齐次核的Hardy-Hilbert型级数不等式

数学年刊, 2012, 33A (6): 679- 686

DOI:10.3969/j.issn.1000-8314.2012.06.003      [本文引用: 2]

Hong Y .

Hardy-Hilbert type series inequality with a quasi-homegeneour kernel

Chinese Annals of Mathematics, 2012, 33A (6): 679- 686

DOI:10.3969/j.issn.1000-8314.2012.06.003      [本文引用: 2]

洪勇, 温雅敏.

齐次核的Hilbert型级数不等式取最佳常数因子的充要条件

数学年刊, 2016, 37A (3): 329- 336

URL     [本文引用: 2]

Hong Y , Wen Y M .

A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor

Chinese Annals of Mathematics, 2016, 37A (3): 329- 336

URL     [本文引用: 2]

/