数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 26-34.

• 论文 • 上一篇    下一篇

拟齐次核的Hilbert型级数不等式的最佳搭配参数条件及应用

洪勇1(),陈强2()   

  1. 1 广州华商学院应用数学系 广州 511300
    2 广东第二师范学院计算机学院 广州 510303
  • 收稿日期:2020-10-28 出版日期:2022-02-01 发布日期:2022-02-23
  • 作者简介:洪勇, E-mail: hongyonggdcc@yeah.net|陈强, E-mail: cq_c120m3@163.com
  • 基金资助:
    国家自然科学基金(61772140)

The Best Matching Parameters Conditions of Hilbert-Type Series Inequality with Quasi-Homogeneous Kernel and Applications

Yong Hong1(),Qiang Chen2()   

  1. 1 Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 511300
    2 School of Computer, Guangdong University of Education, Guangzhou 510303
  • Received:2020-10-28 Online:2022-02-01 Published:2022-02-23
  • Supported by:
    the NSFC(61772140)

摘要:

选择搭配参数ab,利用权函数方法可得Hilbert型级数不等式 该文讨论ab应如何选取才能使具有拟齐次核的不等式中Mab为最佳常数因子的问题,得到了ab为最佳搭配参数的充分必要条件及最佳常数因子的表达式.最后讨论其在求算子范数中的应用.

关键词: Hilbert型级数不等式, 拟齐次核, 最佳常数因子, 最佳搭配参数, 算子范数

Abstract:

Choosing a,b as the matching parameters, we can sue the weight function method to obtain Hilbert-type series inequality in the paper, the problem of how to choose a,b in order to make M(a,b) the best constant factor in inequality with quasi-homogeneous kernels are discussed, necessary and sufficient conditions are obtained for a,b to the best matching parameters, the formula for the best constant factor is obtained. Finally, their applications to solving operator morn are discussed.

Key words: Hilbert-type series inequality, Quasi-homogeneous kernel, The best constant factor, The best matching parameter, Operator norm

中图分类号: 

  • O178