数学物理学报, 2021, 41(4): 997-1012 doi:

论文

含Hardy型势的临界Grushin算子方程解的存在性和渐近估计

张金国,, 杨登允,

Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents

Zhang Jinguo,, Yang Dengyun,

通讯作者: 张金国, E-mail: jgzhang@jxnu.edu.cn

收稿日期: 2020-05-13  

基金资助: 国家自然科学基金.  11761049

Received: 2020-05-13  

Fund supported: the NSFC.  11761049

作者简介 About authors

杨登允,E-mail:yangdengyun@139.com , E-mail:yangdengyun@139.com

Abstract

In this paper, we study the existence and asymptotic behavior of solutions for a class of degenerate elliptic equation involving Grushin-type operator and Hardy potentialswhere $-(\Delta_{x}+|x|^{2\alpha}\Delta_{y}) $ is the Grushin-type operator, $\alpha>0, 2^*(s)=\frac{2(Q-s)}{Q-2} $ is the critical Sobolev-Hardy exponent and $Q=m+(\alpha+1)n $ is the homogenous dimension for Grushin operator. If $0 \leq \mu<(\frac{Q-2}{2})^{2}, 0 < s <2$, we will prove the existence of nontrivial, nonnegative solutions for this degenerate problem, and give the asymptotic behavior of solutions, at the singularity and at infinity.

Keywords: Grushin-type operator ; Moser iteration ; Asymptotic behavior ; Critical Sobolev-Hardy exponents

PDF (386KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张金国, 杨登允. 含Hardy型势的临界Grushin算子方程解的存在性和渐近估计. 数学物理学报[J], 2021, 41(4): 997-1012 doi:

Zhang Jinguo, Yang Dengyun. Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents. Acta Mathematica Scientia[J], 2021, 41(4): 997-1012 doi:

1 引言

本文研究含Hardy型势和临界指数的退化椭圆型方程

$ \begin{equation} -(\Delta _x + |x|^{2\alpha }\Delta _y) u -\mu \frac{\psi ^2 u}{d(z)^2} = \frac{\psi ^s |u|^{2^*(s)-2}u}{d(z)^s}, \quad (x, y)\in{{\Bbb R}} ^{m}\times{{\Bbb R}} ^{n} \end{equation} $

非平凡解的存在性和渐近性问题, 其中$ \alpha>0 $, $ -(\Delta_{x}+|x|^{2\alpha}\Delta_{y}) $是Grushin算子, $ 0\leq \mu<\mu_{G} $, $ 0\leq s<2 $.$ x\neq0 $时, 该算子是椭圆型的且在流形$ \{0\}\times {{\Bbb R}} ^{n} $上是退化的; 当$ \alpha $是非负整数时, 该算子是Hörmander型算子; 当$ \alpha = 0 $时, Grushin算子就变化为经典的Laplace算子; 当$ \alpha = 1 $时, Grushin算子就变化为Heisenberg群上的次Laplace算子. 另外, 从Grushin算子的定义可以看出: 当$ \alpha>0 $时方程(1.1)在$ x $方向平移不是不变的, 从而与$ \alpha = 0 $的情形相比这是一个新的困难.

$ \nabla _\alpha = (X_{1}, X_{2}, \cdots , X_{N}) $表示Grushin梯度, 其中$ N = m+n $.$ h = (h_{1}, h_{2}, \cdots, h_{N})\in C^{1}({{\Bbb R}} ^{N}, {{\Bbb R}} ^{N}) $, 则Grushin向量场诱导的Grushin散度可表示为

因此, Grushin算子表示如下

对任意的$ z = (x, y)\in{{\Bbb R}} ^{m}\times{{\Bbb R}} ^{n} $, 定义$ d(z) = (|x|^{2(\alpha +1)}+(\alpha +1)^2|y|^2)^{\frac{1}{2(\alpha +1)}}, $$ d(z) $称之为Grushin算子的自然度量. 在伸缩变换$ \delta _\lambda (x, y) = (\lambda x, \lambda ^{\alpha +1} y) $ ($ \lambda >0 $)下, $ d(z) $关于$ \lambda $是一次齐次的. 直接计算可知: $ d(z)^{2-Q} $是Grushin算子的基本解, 即$ d(z)^{2-Q} $满足如下方程的解$ (\Delta_{x}+|x|^{2\alpha}\Delta_{y})w(z) = 0, \quad z\neq 0. $

$ D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}) $为函数空间$ C^{\infty}_{0}({{\Bbb R}} ^{N}) $在范数$ \|\cdot\|_{D^{1, 2}_{\alpha}({{\Bbb R}} ^{N})} $下的完备化空间

$ I_{\mu}:D^{1, 2}_{\alpha}({{\Bbb R}} ^{N})\to {{\Bbb R}} $为方程(1.1)对应的能量泛函

$ I_{\mu}\in C^{1}(D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}), {{\Bbb R}} ) $. 若对任意的$ v\in D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}) $, 有

则称$ u\in D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}) $为方程(1.1)的解.

为了运用变分方法处理方程(1.1), 我们需要如下形式的Hardy不等式[1]

$ \begin{equation} \int _{{{\Bbb R}} ^{N}} |\nabla _{\alpha} u|^{2} {\rm d}z \geq \mu_{G} \int _{{{\Bbb R}} ^{N}} \frac{\psi ^2 |u|^2}{d(z)^2}{\rm d}z, \quad \, \forall u\in C_0^{\infty }({{\Bbb R}} ^{N}), \end{equation} $

其中$ \psi: = |\nabla_{\alpha} d(z)| = (\frac{|x|}{d(z)})^{\alpha} $, $ \mu_{G} = (\frac{Q-2}{2})^{2} $是最佳常数, 且该常数是不可达的. 相关内容可参见文献[2-4]等. 结合(1.2)式与Sobolev不等式

其中$ C_{m, n, \alpha} $是仅依赖$ m $, $ n $, $ \alpha $的正常数, $ 2^* = \frac{2Q}{Q-2} $是Sobolev临界指数, 可得如下的Hardy-Sobolev不等式

$ \begin{equation} \bigg( \int _{{{\Bbb R}} ^N} \frac{\psi^s |u| ^{2^*(s)}}{d(z)^s} {\rm d}z \bigg) ^{\frac{2}{2^*(s)}} \leq C_{m, n, \alpha, s}\int _{{{\Bbb R}} ^N} |\nabla _{\alpha} u|^2 {\rm d}z, \quad \forall u\in D_{\alpha}^{1, 2} ({{\Bbb R}} ^N), \end{equation} $

其中$ C_{m, n, \alpha, s} $是仅依赖于$ m $, $ n $, $ \alpha $, $ s $的正常数, $ 0\leq s<2 $, $ 2^*(s): = \frac{2(Q-s)}{Q-2} $是Sobolev嵌入$ D^{1, 2}_{\alpha}({{\Bbb R}} ^{N})\hookrightarrow L^{2^*(s)}({{\Bbb R}} ^{N}, \frac{\psi^{s}}{d(z)^{s}}{\rm d}z) $临界指数. 不等式(1.3)的证明过程请见引理2.1的证明.

$ \mu< \mu_G $时, 定义范数

由(1.2)式可知

$ \begin{equation} (1-\frac{\mu_+}{\mu_G}) \|u\|^2_{D^{1, 2}_{\alpha}({{\Bbb R}} ^N)} \le \|u\|^2 \le (1+\frac{\mu_-}{\mu_G}) \|u\|^2_{D^{1, 2}_{\alpha}({{\Bbb R}} ^N)}, \quad \forall u\in D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}), \end{equation} $

其中$ \mu_+ = \rm{max} \{\mu, 0\} $ and $ \mu_- = - \rm{max} \{\mu, 0\} $. 因此, 不等式(1.4)表明范数$ \| \cdot \| $$ \| \cdot\|_{D^{1, 2}_{\alpha}({{\Bbb R}} ^N)} $是等价的. 结合(1.3)–(1.4)式, 存在常数$ C>0 $使得

从而, 从上述不等式出发可以定义如下的最佳常数

显然该常数的可达性与方程(1.1)解的存在性是密切相关的.

奇异非线性问题因为与大量的数学物理问题有着密切的联系而一直受到人们的广泛关注, 近年来有许多数学学者对此类问题进行了研究, 主要讨论这类问题解的存在性和多解性, 如文献[5-11]研究了Laplacian和$ p $-Laplacian算子的相关问题; 有关分数阶Laplacian算子方程的结果可以参考文献[12-16]等. 由于Grushin型算子是退化的, 与之相关的含Hardy型势和临界增长方程相关问题的研究结果还不是很丰富, 本文作者已有了部分结果[23-24]}. 利用上述文献的思路与方法, 结合Ekeland变分原理, 本文首先研究含临界Sobolev-Hardy指数和奇性项的退化椭圆方程解的存在性. 得出了如下的结论.

定理 1.1    若$ 0\leq s<2 $, $ 0<\mu<\mu_{G} $. 则常数$ \Lambda_{\mu, s}({{\Bbb R}} ^N) $是可达的.

此外, 在研究含Hardy型势的Laplace算子临界指数增长问题时, 讨论其相应的极限方程基态解的存在性和渐近性质是研究这类问题的基础. 确切的说, 在运用Brezis-Nirenberg分析技巧解决此类问题时, 我们常需要用极限方程的基态解作为试验函数来估算临界指数方程相应的能量泛函的水平上界, 此时极限方程解的表达式显得尤为重要. 但有些非线性算子的极限方程基态解并没有具体的表达式, 此时就需要估算该解在奇性点和无穷远点的渐近性质. 本文利用Grushin向量场算子的Moser迭代和Kelvin变换技巧, 运用与经典Laplace方程相类似的研究技巧, 得到了方程(1.1)的解在原点和无穷远点的渐近性质, 从而将Laplace算子方程相类似的性质推广到Grushin型退化算子方程中, 为研究Grushin算子相关的奇异问题奠定了基础. 具体结论表述如下.

定理 1.2    设$ 0\leq s<2 $, $ 0\leq\mu<\mu_{G} $.$ u\in D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}) $是方程(1.1)的非平凡解, 则当$ d(z)\to 0 $时, 有

$ \begin{equation} u(z) = O\bigg(\frac{1}{d(z)^{\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}\bigg); \end{equation} $

$ d(z)\to +\infty $时, 有

$ \begin{equation} u(z) = O\bigg(\frac{1}{d(z)^{\frac{Q-2}{2}+\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}\bigg). \end{equation} $

本文结构如下: 在第2节中先给出Grushin向量场Sobolev-Hardy不等式的证明, 然后完成定理1.1的证明. 在第3节中用Moser迭代技巧和Kelvin变换方法给出定理1.2的证明.

2 定理1.1的证明

本节首先给出(3)式的证明.

引理 2.1    假设$ 0\leq s<2 $. 则存在常数$ C_{1}>0 $使得

$ \begin{equation} \bigg(\int_{{{\Bbb R}} ^{N}} \frac{\psi^{s}|u|^{2^*(s)}}{d(z)^{s}}{\rm d}z\bigg)^\frac{2}{{2^*(s)}} \leq C_{1} \int_{{{\Bbb R}} ^N} |\nabla_{\alpha}u|^2 {\rm d}z, \quad \forall u \in D^{1, 2}_{\alpha}({{\Bbb R}} ^N) . \end{equation} $

进一步, 若$ \mu< \mu_{G} $, 则存在常数$ C_{2}>0 $使得

$ \begin{equation} C_{2}\bigg(\int_{{{\Bbb R}} ^N} \frac{\psi^{s}|u|^{2^*(s)}}{d(z)^{s}}{\rm d}z\bigg)^\frac{2}{{2^*(s)}} \leq \int_{{{\Bbb R}} ^N} |\nabla_{\alpha}u|^2 {\rm d}z - \mu \int_{{{\Bbb R}} ^N}\frac{\psi^{2} |u|^{2}}{d(z)^{2}}{\rm d}z, \quad \forall u \in D^{1, 2}_{\alpha} ({{\Bbb R}} ^N). \end{equation} $

    当$ s = 0 $, 不等式(2.1)就是Grushin向量场Sobolev不等式. 下面考虑$ 0 <s< 2 $. 利用Hölder不等式, Hardy不等式和Sobolev不等式可得

从而(2.1)式得证.

$ \mu_{G} $的定义可以看出, 对任意的$ u \in D^{1, 2}_{\alpha}({{\Bbb R}} ^N), $

从而, 当$ \mu< \mu_G $时, 有(2.2)式成立. 引理2.1得证.

定理1.1的证明    对任意的$ 0\leq \mu<\mu_{G} $, $ 0\leq s<2 $. 考察最佳Sobolev-Hardy常数$ \Lambda_{\mu, s}({{\Bbb R}} ^N) $达到函数的存在性等价于在空间$ D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}) $上研究如下函数

极小值的存在性问题.

下面分两种情形来考虑.

情形1 $ 0<s <2 $. 对函数$ I(u) $运用Ekeland变分原理[17]可知: 存在极小序列$ \{u_k\}_k\subset D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}) $使得

$ \begin{equation} \lim\limits_{k\to \infty}\int_ {{{\Bbb R}} ^N} \frac{\psi^{s}|u_k|^ {2^*(s)}}{d(z)^s}{\rm d}z = 1, \end{equation} $

$ \begin{equation} \lim\limits_{k\to \infty}I(u_k) = \Lambda_{\mu, s}({{\Bbb R}} ^N), \end{equation} $

以及在$ D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}) $的对偶空间$ (D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}))' $中有

$ \begin{equation} \lim\limits_{k\to \infty}I'(u_k) = 0. \end{equation} $

定义函数$ J $, $ K:D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N})\to {{\Bbb R}} $如下

则由(2.4)式和(2.5)式可得

$ \begin{equation} \lim\limits_{k\to \infty}J(u_k) = \frac{1}{2} \Lambda_{\mu, s}({{\Bbb R}} ^N), \qquad \lim\limits_{k\to \infty}[J'(u_k) - \Lambda_{\mu, s}({{\Bbb R}} ^N) K'(u_k)] = 0. \end{equation} $

定义集中函数

其中$ B_{d}(0, r): = \{z\in {{\Bbb R}} ^{m}\times{{\Bbb R}} ^{n}:d(z)<r\} $表示在度量$ d(z) $下以原点$ 0 $为圆心, $ r>0 $为半径的开球. 因为对任意的$ k \in \mathbb{N} $$ \int_ {{{\Bbb R}} ^{N}}\frac{\psi^{s}|u_k|^ {2^*(s)}}{d(z)^s}{\rm d}z = 1 $, 利用连续性可知: 存在$ r_k>0 $使得对任意的$ k \in \mathbb{N} $

$ v_k(z): = r_k^{\frac{Q-2}{2}} u_k(\delta_{r_{k}}(z)) $ ($ k \in \mathbb{N} $). 对任意的$ \lambda>0 $, 简单计算可得

因此

以及

从而, 结合上述两式与(2.3)–(2.4)式可得

$ \begin{equation} \lim\limits_{k \to \infty} \int_{{{\Bbb R}} ^N} \bigg( |\nabla_{\alpha} v_k|^2 - \mu\frac{\psi^{2}|v_k|^{2}}{d(z)^{2}} \bigg){\rm d}z = \Lambda_{\mu, s}({{\Bbb R}} ^N); \end{equation} $

$ \begin{equation} \lim\limits_{k \to \infty}\int_ {{{\Bbb R}} ^N} \frac{\psi^{s}|v_k|^ {2^*(s)}}{d(z)^s}{\rm d}z = 1. \end{equation} $

同理, 运用上述计算过程可得

$ \begin{equation} \int_{B_{d}(0, 1)}\frac{\psi^{s} |v_k|^ {2^*(s)}}{d(z)^s} {\rm d}z = \frac{1}{2}, \quad \forall k \in \mathbb{N}. \end{equation} $

由(1.4)和(2.7)式可知$ \{\|v_k\|_{D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N})} \} _{k \in \mathbb{N}} $是有界的. 所以, 存在子列, 仍记为$ \{v_k\} $, 使得

$ \begin{equation} \left\{\begin{array}{llll} & v_k \rightharpoonup v & \rm{在 D^{1, 2}_{ \mathsf{ α}}({{\Bbb R}} ^N) 中}, \\ &v_k \to v& \rm{在 L_{\rm loc}^{q}({{\Bbb R}} ^N) 中}, \, \forall q\in [1, 2^*), \\ &v_k(z) \to v(z) &\rm{几乎处处于 {{\Bbb R}} ^N. } \end{array}\right. \end{equation} $

下证$ v\not\equiv0 $. 不妨假设$ v\equiv0 $, 则由(2.10)式可得

$ \begin{equation} v_k \rightharpoonup 0\, \, {于 D^{1, 2}_{ \mathsf{ α}}({{\Bbb R}} ^{N}) 中}; \quad v_k \to 0\, \, {于 L_{\rm loc}^{q}({{\Bbb R}} ^N) (1\le q<2^*) 中}. \end{equation} $

取截断函数$ \eta \in C_0^{\infty}({{\Bbb R}} ^{N}) $, 当$ z\in B_{d}(0, 1) $时有$ 0 \le \eta \le 1 $; 当$ z\in B_{d}(0, \frac{1}{2}) $时有$ \eta\equiv 1 $. 在(2.6)式中取试验函数$ \eta^2 v_k(z) $, 则得

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^{N}}\nabla_{\alpha} v_k \nabla_{\alpha} (\eta^2 v_k ) {\rm d}z - \mu \int_{{{\Bbb R}} ^{N}} \frac{\psi^{2}\, v_k (\eta^2 v_k) }{d(z)^{2}}{\rm d}z\\ & = & \Lambda_{\mu, s}({{\Bbb R}} ^N) \int_ {{{\Bbb R}} ^N}\frac{\psi^{s} \, |v_k|^{2^*(s)-2}v_{k} (\eta^2 v_k ) }{d(z)^s}{\rm d}z+o(1). \end{eqnarray} $

利用(2.11)式, 有

结合上式与(2.8), (2.9)和(2.12)式, 可得

$ \begin{eqnarray} \|\eta v_k\|^2 & = & \int_{{{\Bbb R}} ^N} |\nabla_{\alpha} (\eta v_k)|^2 {\rm d}z - \mu\int_{{{\Bbb R}} ^N} \frac{\psi^{2} |\eta v_k|^2 }{d(z)^{2}}{\rm d}z\\ & = &\Lambda_{\mu, s}({{\Bbb R}} ^N)\int_ {{{\Bbb R}} ^N} \frac{\psi^{s}| v_k|^{2^*(s)-2} (|\eta v_k|^2) }{d(z)^s}{\rm d}z+o(1) \\ & \leq& \Lambda_{\mu, s}({{\Bbb R}} ^N) \int_{B_{d}(0, 1)} \frac{\psi^{s}|v_k|^{2^*(s)}}{d(z)^s} {\rm d}z+o(1) \\ & = & \frac{\Lambda_{\mu, s}({{\Bbb R}} ^N)}{2^{1-\frac{2}{2^*(s)}}} \bigg( \int_{B_{d}(0, 1)}\frac{\psi^{s} |v_k|^{2^*(s)}}{d(z)^s} {\rm d}z \bigg)^\frac{2}{2^*(s)}+o(1). \end{eqnarray} $

由于$ 2^*(s) < 2^* $, 利用(2.10)式可得

因此, 结合上式及Hölder不等式, 计算可得

所以

$ \begin{equation} \bigg( \int_{B_{d}(0, 1)} \frac{\psi^{s}|v_k|^ {2^*(s)}}{d(z)^s} {\rm d}z \bigg)^\frac{2}{2^*(s)} \leq \bigg( \int_{{{\Bbb R}} ^N} \frac{\psi^{s}|\eta v_k|^ {2^*(s)}}{d(z)^s} {\rm d}z \bigg)^\frac{2}{2^*(s)} + o(1). \end{equation} $

因此, 将(2.14)式带入(2.13)式, 得

$ \begin{equation} \|\eta v_k\|^2 \leq\frac{\Lambda_{\mu, s}({{\Bbb R}} ^N) }{2^{1-\frac{2}{2^*(s)}}} \bigg(\int_ {{{\Bbb R}} ^N}\frac{\psi^{s} |\eta v_k|^{2^*(s)}}{d(z)^s}{\rm d}z\bigg)^\frac{2}{2^*(s)}+o(1). \end{equation} $

另一方面, 由最佳常数$ \Lambda_{\mu, s}({{\Bbb R}} ^N) $的定义和(2.15) 式可知

从而, 由$ 2^{1-\frac{2}{2^*(s)}}>1 $可得

与(2.9)式矛盾.故$ v\not\equiv 0 $.

下证$ v_k $$ {{\Bbb R}} ^{N} $中弱收敛于$ v $, 且使得$ \int_ {{{\Bbb R}} ^{N}}\frac{\psi^{s} |v|^ {2^*(s)}}{d(z)^s}{\rm d}z = 1 $.

$ \theta_k = v_k-v $, 由Brezis-Lieb引理[18]可得

$ \begin{equation} \int_{{{\Bbb R}} ^{N}} \frac{\psi^{s} |v_k|^{2^*(s)}}{d(z)^{s}}{\rm d}z = \int_{{{\Bbb R}} ^{N}} \frac{\psi^{s} |v|^{2^*(s)}}{d(z)^{s}}{\rm d}z + \int_{{{\Bbb R}} ^{N}} \frac{\psi^{s} |\theta_k|^{2^*(s)}}{d(z)^{s}}{\rm d}z+o(1), \end{equation} $

以及

$ \begin{equation} \|v_k\|^2 = \|v\|^2+\|\theta_k\|^2 + o(1). \end{equation} $

由(2.6), (2.16)和(2.17)式和常数$ \Lambda_{\mu, s}({{\Bbb R}} ^N) $的定义可得

$ \begin{eqnarray} o(1) & = &\|v_k\|^2 - \Lambda_{\mu, s}({{\Bbb R}} ^N) \int_{{{\Bbb R}} ^N} \frac{\psi^{s}|v_k|^{2^*(s)}}{d(z)^{s}}{\rm d}z \\& = &\|v\|^2 - \Lambda_{\mu, s}({{\Bbb R}} ^N) \int_{{{\Bbb R}} ^N} \frac{\psi^{s}|v|^{2^*(s)}}{d(z)^{s}}{\rm d}z + \|\theta_k\|^2 - \Lambda_{\mu, s}({{\Bbb R}} ^N) \int_{{{\Bbb R}} ^N}\frac{\psi^{s} |\theta_k|^{2^*(s)}}{d(z)^{s}}{\rm d}z + o(1) \\ & \geq& \Lambda_{\mu, s}({{\Bbb R}} ^N) \left[ \bigg(\int_{{{\Bbb R}} ^N} \frac{\psi^{s}|v|^{2^*(s)}}{d(z)^{s}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} - \int_{{{\Bbb R}} ^N} \frac{\psi^{s}|v|^{2^*(s)}}{d(z)^{s}}{\rm d}z \right] \\ &&+ \Lambda_{\mu, s}({{\Bbb R}} ^N) \left[ \bigg(\int_{{{\Bbb R}} ^N} \frac{\psi^{s}|\theta_k|^{2^*(s)}}{d(z)^{s}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} - \int_{{{\Bbb R}} ^N}\frac{\psi^{s}|\theta_k|^{2^*(s)}}{d(z)^{s}}{\rm d}z \right]+o(1) \\ & = &\Lambda_{\mu, s}({{\Bbb R}} ^N) (A+B), \end{eqnarray} $

其中

结合$ \lim\limits_{k\to +\infty}\int_{{{\Bbb R}} ^{N}} \frac{\psi^{s}|v_{k}|^{2^*(s)}}{d(z)^{s}}{\rm d}z = 1 $及(2.16)式可得

从而$ A\geq 0 $, $ B\geq 0 $, 且$ A+B = o(1) $. 因此, $ A = 0 $, $ B = o(1) $. 又因为$ v \not\equiv 0 $, 所以$ \int_{{{\Bbb R}} ^{N}}\frac{\psi^{s} |v|^{2^*(s)}}{d(z)^{s}}{\rm d}z = 1 $. 同时上述过程亦可推出

所以, 对任意的$ s \in (0, 2) $, 存在最佳常数$ \Lambda_{\mu, s}({{\Bbb R}} ^N) $的达到函数$ v $. 又因为$ |v| $亦满足上述过程, 所以不放假设$ v $是非负的. 即对任意的$ s \in (0, 2) $存在非平凡, 非负达到函数$ v $.

情形2 $ s = 0 $. 由文献[19]可知当$ s = 0 $, $ \mu = 0 $$ \Lambda_{0, 0}({{\Bbb R}} ^N) $是可达的. 因此, 下面考虑当$ s = 0 $$ 0<\mu <\mu_{G} $$ \Lambda_{\mu, 0}({{\Bbb R}} ^N) $是可达的.

$ \{u_k\}_{k\in \mathbb{N}} \subset D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}) \setminus \{ 0 \} $$ \Lambda_{\mu, 0}({{\Bbb R}} ^N) $的极小序列, 即

$ \begin{equation} \lim\limits_{k \to \infty}\int_ {{{\Bbb R}} ^N} |u_k|^{2^*}{\rm d}z = 1, \end{equation} $

$ \begin{equation} \lim\limits_{k \to \infty} \int_{{{\Bbb R}} ^N} \bigg( |\nabla_{\alpha} u_k|^2 - \mu \frac{\psi^{2}|u_k|^{2}}{d(z)^{2}}\bigg){\rm d}z = \Lambda_{\mu, 0}({{\Bbb R}} ^N). \end{equation} $

所以序列$ \{u_k\} _{k \in \mathbb{N}} $$ D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}) $中是有界的. 因此, 存在$ \{u_k\} _{k \in \mathbb{N}} $的子序列, 仍记为$ \{u_k\} _{k \in \mathbb{N}} $, 使得$ u_k \rightharpoonup u $$ D^{1, 2}_{\alpha} ({{\Bbb R}} ^{N}) $, 并且

$ \begin{equation} \| u_k\|^2_{D^{1, 2}_{\alpha}({{\Bbb R}} ^{N})} = \| u_k - u\|^2_{D^{1, 2}_{\alpha}({{\Bbb R}} ^{N})} +\| u\|^2_{D^{1, 2}_{\alpha}({{\Bbb R}} ^{N})}+o(1), \end{equation} $

$ \begin{equation} \int_{{{\Bbb R}} ^{N}} \frac{\psi^{2}|u_{k}|^{2}}{d(z)^{2}}{\rm d}z = \int_{{{\Bbb R}} ^{N}} \frac{\psi^{2}|u_k-u|^{2}}{d(z)^{2}}{\rm d}z +\int_{{{\Bbb R}} ^{N}} \frac{\psi^{2}|u|^{2}}{d(z)^{2}}{\rm d}z+ o(1) = \int_{{{\Bbb R}} ^{N}} \frac{\psi^{2}|u|^{2}}{d(z)^{2}}{\rm d}z+ o(1), \end{equation} $

以及

$ \begin{equation} \int_ {{{\Bbb R}} ^{N}} |u_k|^{2^*}{\rm d}z = \int_ {{{\Bbb R}} ^{N}} |u_k-u|^{2^*}{\rm d}z+\int_ {{{\Bbb R}} ^{N}} |u|^{2^*}{\rm d}z+o(1). \end{equation} $

从而, 利用(2.20)及(2.21)–(2.23)式可得

$ \begin{equation} \big(\Lambda_{0, 0}({{\Bbb R}} ^N) - \Lambda_{\mu, 0}({{\Bbb R}} ^N)\big) \int_ {{{\Bbb R}} ^N} |u_k-u|^ {2^*}{\rm d}z+o(1)\leq 0. \end{equation} $

又因为对任意的$ \mu>0 $, 总是有$ \Lambda_{\mu, 0}({{\Bbb R}} ^N)< \Lambda_{0, 0}({{\Bbb R}} ^N) $. 所以, (2.24)式表明$ u_k $强收敛于$ u $$ L^{2^*}({{\Bbb R}} ^N) $中, 从而$ \int_ {{{\Bbb R}} ^N} |u|^{2^*}{\rm d}z = 1 $. 由于$ I $是下半连续的, 所以$ u $$ \Lambda_{\mu, 0}({{\Bbb R}} ^N) $的极小函数. 类似于情形1可得: 当$ s = 0 $$ 0<\mu <\mu_{G} $时, 存在$ \Lambda_{\mu, 0}({{\Bbb R}} ^N) $的非平凡, 非负达到函数. 定理1.1证明完毕.

3 定理1.2的证明

为了讨论方程(1.1)的解在原点和无穷远点的渐近性质, 引入如下加权形式的Sobolev-Hardy不等式, 参见文献[20, 定理6.1]或[21].设$ 0\leq s\leq 2 $, $ \gamma> \frac{2-Q}{2} $, 则对任意的$ u\in C_0^\infty ({{\Bbb R}} ^N) $, 存在仅依赖于$ s $, $ Q $, $ \gamma $的常数$ S>0 $, 使得

$ \begin{equation} \bigg(\int_{{{\Bbb R}} ^N} \psi^s \frac{| d(z)^{\gamma} u| ^{2^*(s)}}{d(z)^s}{\rm d}z\bigg) ^{\frac{2}{2^*(s)}}\leq S\int _{{{\Bbb R}} ^N} |d(z)^{\gamma}\nabla _\alpha u|^2 {\rm d}z, \end{equation} $

其中$ 2^*(s) = \frac{2(Q-s)}{Q-2} $. 显然: 当$ \gamma = 0 $时, (3.1) 式就变成Sobolev-Hardy不等式(1.3).

为了研究引理3.1, 引入Banach空间$ D^{1, 2}_{\alpha, \theta}({{\Bbb R}} ^{N}) = D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}, d(z)^{-2\theta}{\rm d}z) $, 其范数定义如下

引理 3.1    假设$ 0<s<2 $, $ 0<\theta<\frac{Q-2}{2} $.$ v\in D^{1, 2}_{\alpha, \theta}({{\Bbb R}} ^{N}) $是方程

$ \begin{equation} -\rm{div}_{\alpha}(d(z)^{-2\theta}\nabla_{\alpha}v) = \psi^{s}\frac{v^{2^*(s)-1}}{d(z)^{s+\theta 2^*(s)}}, \quad \forall z\in {{\Bbb R}} ^{N} \end{equation} $

的非负非平凡弱解, 则有$ v\in L^{\infty}({{\Bbb R}} ^{N}) $. 特别地, 存在常数$ R>0 $$ C>0 $使得

    对任意的$ \beta>1 $$ L>0 $, 定义函数

则由$ \nabla_{\alpha}\phi = v_{L}^{2(\beta-1)}\nabla_{\alpha}v+2(\beta-1)v_{L}^{2(\beta-1)-1}\nabla_{\alpha}v_{L}v $可得

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^{N}}d(z)^{-2\theta}\langle\nabla_{\alpha}v, \nabla_{\alpha}\phi \rangle {\rm d}z\\ & = &\int _{{{\Bbb R}} ^{N}}d(z)^{-2\theta} v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z+2(\beta-1)\int _{{{\Bbb R}} ^{N}}d(z)^{-2\theta} v_{L}^{2(\beta-1)-1}v\langle\nabla_{\alpha}v, \nabla_{\alpha}v_{L}\rangle {\rm d}z\\ & = &\int _{{{\Bbb R}} ^{N}}d(z)^{-2\theta } v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z+2(\beta-1)\int _{|v|<L}d(z)^{-2\theta } v^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z\\ &\geq& \int _{{{\Bbb R}} ^{N}}d(z)^{-2\theta } v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z. \end{eqnarray} $

此外, 在(3.2)式两边乘上$ \phi $并积分得

$ \begin{equation} \int_{{{\Bbb R}} ^{N}}d(z)^{-2\theta}\langle\nabla_{\alpha}v, \nabla_{\alpha}\phi \rangle {\rm d}z = \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}v^{2^*(s)-1}\phi}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z = \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}v^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}v_{L}^{2(\beta-1)} {\rm d}z. \end{equation} $

由假设条件$ \theta<\frac{Q-2}{2} $可得$ -\theta>\frac{2-Q}{2} $, 所以在不等式(3.1)式中令$ \gamma = -\theta $, 则得到如下加权形式的Sobolev-Hardy不等式

$ \begin{equation} \bigg( \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}| u| ^{2^*(s)}}{d(z)^{s+\theta 2^*(s)}} {\rm d}z \bigg) ^{\frac{2}{2^*(s)}} \leq S\int _{{{\Bbb R}} ^{N}}\frac{| \nabla _\alpha u|^2}{d(z)^{2\theta}} {\rm d}z, \quad \forall u\in D_\alpha^{1, 2}( {{\Bbb R}} ^{N}, d^{-2\theta }{\rm d}z). \end{equation} $

$ w_{L} = v v_{L}^{\beta-1} $, 则$ \nabla_{\alpha}w_{L} = v_{L}^{\beta-1}\nabla_{\alpha}v+ (\beta-1)v\, v_{L}^{\beta-2}\nabla_{\alpha}v_{L} $, 将其带入(3.5)式, 可得

$ \begin{eqnarray} &&\bigg( \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}|w_{L}|^{2^*(s)}} {d(z)^{s+\theta 2^*(s)}}{\rm d}z\bigg) ^{\frac{2}{2^*(s)}}\\ &\leq& S \int _{{{\Bbb R}} ^{N}}d^{-2\theta }|v_{L}^{\beta-1}\nabla_{\alpha}v+ (\beta-1)v\, v_{L}^{\beta-2}\nabla_{\alpha}v_{L}|^{2}{\rm d}z\\ &\leq &2S \bigg( \int _{{{\Bbb R}} ^{N}}d^{-2\theta }|v_{L}^{\beta-1}\nabla_{\alpha}v|^{2}{\rm d}z+ (\beta-1)^{2}\int _{{{\Bbb R}} ^{N}}d^{-2\theta }|v\, v_{L}^{\beta-2}\nabla_{\alpha}v_{L}|^{2}{\rm d}z\bigg)\\ &\leq& 2S \bigg( \int _{{{\Bbb R}} ^{N}}d^{-2\theta }v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z+ (\beta-1)^{2}\int _{{{\Bbb R}} ^{N}}d^{-2\theta }v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z\bigg)\\ & = &2S(1+(\beta-1)^{2}) \int _{{{\Bbb R}} ^{N}}d^{-2\theta }v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z\\ & = &2S\beta^{2}\bigg(\frac{1}{\beta^2}+(\frac{\beta-1}{\beta})^{2}\bigg) \int _{{{\Bbb R}} ^{N}}d^{-2\theta }v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z. \end{eqnarray} $

又因为$ \beta>1 $, 所以$ \frac{1}{\beta^2}+(\frac{\beta-1}{\beta})^{2}<2 $. 从而由(3.3), (3.4)和(3.6)式可得

$ \begin{eqnarray} \bigg( \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}|w_{L}|^{2^*(s)}} {d(z)^{s+\theta 2^*(s)}}{\rm d}z\bigg) ^{\frac{2}{2^*(s)}} &\leq& 4S\beta^{2} \int _{{{\Bbb R}} ^{N}}d^{-2\theta }v_{L}^{2(\beta-1)}|\nabla_{\alpha}v|^{2}{\rm d}z\\ &\leq &4S\beta^{2}\int_{{{\Bbb R}} ^{N}}d(z)^{-2\theta}\langle\nabla_{\alpha}v, \nabla_{\alpha}\phi \rangle {\rm d}z\\ & = &4S\beta^{2}\int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}v^{2^*(s)}v_{L}^{2(\beta-1)}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\\ & = &4S\beta^{2}\int _{{{\Bbb R}} ^{N}}\frac{\psi^{s} v^{2^*(s)-2}w_{L}^{2}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z. \end{eqnarray} $

对任意的$ M>0 $, 由Hölder不等式可得

$ \begin{eqnarray} \int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} v^{2^*(s)-2}w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z & = &\int _{v(z)\leq M}\frac{\psi^{s} v^{2^*(s)-2}w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z+ \int _{v(z)>M}\frac{\psi^{s} v^{2^*(s)-2}w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\\ &\leq& M^{2^*(s)-2}\int _{v(z)\leq M}\frac{\psi^{s}w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\\ &&+ \int _{v(z)>M} \frac{\psi^{s\cdot\frac{2}{2^*(s)}}w_{L}^{2}}{d(z)^{(s+\theta2^{*}(s))\frac{2}{2^*(s)}}} \cdot \frac{\psi^{s\cdot \frac{2^*(s)-2}{2^*(s)}}v^{2^*(s)-2}} {d(z)^{(s+\theta2^{*}(s))\frac{2^*(s)-2}{2^*(s)}}} {\rm d}z\\ &\leq& M^{2^*(s)-2}\int _{v(z)\leq M} \frac{\psi^{s} w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\\ &&+ \bigg(\int _{v(z)>M} \frac{\psi^{s}|w_{L}|^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} \bigg(\int _{v(z)>M}\frac{\psi^{s} |v|^{2^*(s)}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg)^{\frac{2^*(s)-2}{2^*(s)}} \\ &\leq& M^{2^*(s)-2}\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\\ &&+ \bigg(\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s}|w_{L}|^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} \bigg(\int _{v(z)>M}\frac{\psi^{s}|v|^{2^*(s)}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg)^{\frac{2^*(s)-2}{2^*(s)}}. \end{eqnarray} $

从而结合(3.7)和(3.8)式可得

$ \begin{eqnarray} && \bigg( \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}|w_{L}|^{2^*(s)}} {d(z)^{s+\theta 2^*(s)}}{\rm d}z\bigg) ^{\frac{2}{2^*(s)}} \leq 4S \beta^{2}M^{2^*(s)-2}\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z \\ && +4S \beta^{2} \bigg(\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s}|w_{L}|^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} \bigg(\int _{v(z)>M}\frac{\psi^{s}|v|^{2^*(s)}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg)^{\frac{2^*(s)-2}{2^*(s)}}. \end{eqnarray} $

因为$ v\in D^{1, 2}_{\alpha, \theta}({{\Bbb R}} ^{N}) $, 所以$ \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}|v|^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z<\infty $, 则存在充分大的$ M_{0}>1 $使得

$ \begin{equation} \bigg(\int _{v(z)>M_{0}}\psi^{s}\frac{v^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg)^{\frac{2-s}{Q-s}} \leq \frac{1}{8S\beta^{2}}. \end{equation} $

从而由(3.9)和(3.10)式可得

$ \begin{equation} \bigg(\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s}|w_{L}|^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} \leq 8S\beta^{2}M^{2^*(s)-2}_{0}\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} w_{L}^{2}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z. \end{equation} $

$ C_{1} = 8SM^{2^*(s)-2}_{0} $. 在(3.11)式中令$ L\to \infty $, 并利用Fatou引理可得

$ \begin{equation} \bigg(\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} v^{\beta 2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} \leq C_{1}\beta^{2}\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} v^{2 \beta}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z<+\infty. \end{equation} $

在(3.12)式中取$ \beta = \beta_{1} = \frac{2^*(s)}{2}>1 $, 即得

$ \begin{equation} \bigg(\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} v^{\beta_{1} 2^*(s)}}{d(z)^{s+\theta2^{*}(s)}}{\rm d}z\bigg)^{\frac{2}{2^*(s)}} \leq C_{1}\beta_{1}^{2}\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} v^{2^*(s)}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z<+\infty. \end{equation} $

取序列$ \{\beta_{k}\}_{k = 2}^{\infty} $, 其满足如下条件

$ \begin{equation} 2\beta_{k+1}+2^*(s)-2 = \beta_{k}\, 2^*(s), \qquad \forall k\geq 1. \end{equation} $

显然: 当$ \beta_{k}>1 $时, 必有$ \beta_{k+1}>1 $. 从而用$ \beta_{k+1} $替换(3.7)式中的$ \beta $, 可得

$ \begin{equation} \bigg( \int _{{{\Bbb R}} ^{N}}\frac{\psi^{s}|v v_{L}^{\beta_{k+1}-1}|^{2^*(s)}} {d(z)^{s+\theta 2^*(s)}}{\rm d}z\bigg) ^{\frac{2}{2^*(s)}} \leq 4S\beta^{2}_{k+1}\int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} v^{2^*(s)-2}(vv_{L}^{(\beta_{k+1}-1)})^{2}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z. \end{equation} $

在(3.15)式中令$ L\to +\infty $, 利用Fatou引理可得

从而

$ \begin{equation} \bigg( \int _{{{\Bbb R}} ^{N}}\psi^{s}\frac{v^{\beta_{k+1}2^*(s)}} {d(z)^{s+\theta 2^*(s)}}{\rm d}z\bigg) ^{\frac{1}{2^*(s)(\beta_{k+1}-1)}} \leq (4S\beta^{2}_{k+1})^{\frac{1}{2(\beta_{k+1}-1)}} \bigg(\int _{{{\Bbb R}} ^{N}}\psi^{s}\frac{v^{\beta_{k}2^*(s)}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg)^{\frac{1}{2^*(s)(\beta_{k}-1)}}. \end{equation} $

对任意的$ k\in \mathbb{N} $, 令

则由(3.16)可得

从而

$ \begin{eqnarray} \ln {\cal A}_{k+1} &\leq& \ln (C_{k}{\cal A}_{k}) = \ln C_{k}+\ln{\cal A}_{k} \leq \ln C_{k}+\ln C_{k-1}+\ln{\cal A}_{k-1}\\ &\leq& \sum\limits_{i = 1}^{k}\ln C_{i}+\ln{\cal A}_{1}\\ & = &\sum\limits_{i = 1}^{k}\frac{1}{2(\beta_{i+1}-1)}(\ln 4S+2\ln \beta_{i+1})+\ln{\cal A}_{1}\\ & = &\sum\limits_{i = 1}^{k}\bigg(\frac{\ln 4S}{2(\beta_{i+1}-1)}+\frac{\ln \beta_{i+1}}{\beta_{i+1}-1}\bigg)+\ln{\cal A}_{1}. \end{eqnarray} $

又因为序列$ \{\beta_{i}\} $满足$ 2\beta_{i+1}+2^*(s)-2 = \beta_{i}\, 2^*(s) $, 即$ \beta_{i+1}-1 = \frac{2^*(s)}{2}(\beta_{i}-1) $, 从而

由此可得

$ \begin{eqnarray} &&\sum\limits_{i = 1}^{k}\bigg(\frac{\ln 4S}{2(\beta_{i+1}-1)}+\frac{\ln \beta_{i+1}}{\beta_{i+1}-1}\bigg)\\ & = &\sum\limits_{i = 1}^{k}\bigg(\frac{\ln 4S}{2(\beta_{1}-1)}\bigg(\frac{2}{2^*(s)}\bigg)^{i}+\frac{\ln \left[\big(\frac{2^*(s)}{2}\big)^{i}(\beta_{1}-1)+1\right]}{\beta_{1}-1}\bigg(\frac{2}{2^*(s)}\bigg)^{i}\bigg)\\ &\leq&\sum\limits_{i = 1}^{k}\bigg(\frac{\ln 4S}{2(\beta_{1}-1)}\bigg(\frac{2}{2^*(s)}\bigg)^{i}+\frac{\ln \big(\frac{2^*(s)}{2}\big)^{i}\beta_{1}}{\beta_{1}-1}\bigg(\frac{2}{2^*(s)}\bigg)^{i}\bigg)\\ &\leq& C\sum\limits_{i = 1}^{k}\bigg(\bigg(\frac{2}{2^*(s)}\bigg)^{i}+i\bigg(\frac{2}{2^*(s)}\bigg)^{i}\bigg). \end{eqnarray} $

由于级数$ \sum\limits_{i = 1}^{\infty}\big(\frac{2}{2^*(s)}\big)^{i} $, $ \sum\limits_{i = 1}^{\infty}i\big(\frac{2}{2^*(s)}\big)^{i} $是收敛的, 从而由(3.17)–(3.18)式可知存在常数$ C>0 $, 使得$ \ln {\cal A}_{k+1}\leq C<+\infty $, 即

$ \begin{equation} \bigg(\int _{{{\Bbb R}} ^{N}}\frac{\psi^{s} v^{\beta_{k}2^*(s)}} {d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg)^{\frac{1}{2^*(s)(\beta_{k}-1)}} = {\cal A}_{k}\leq e^C<+\infty. \end{equation} $

所以, 对任意的$ R>1 $, 利用(3.19)式以及函数$ \psi $的有界性可以推出

$ \begin{eqnarray} \bigg(\int _{d(z)<R}v^{\beta_{k}2^*(s)}{\rm d}z\bigg)^{\frac{1}{2^*(s)\beta_{k}}} &\leq& c R^{\frac{s+\theta 2^*(s)}{2^*(s)\beta_{k}}} \bigg(\int _{d(z)<R}\frac{\psi^{s} v^{\beta_{k}2^*(s)}}{d(z)^{s+\theta2^{*}(s)}} {\rm d}z\bigg) ^{\frac{1}{2^*(s)(\beta_{k}-1)}\frac{\beta_{k}-1}{\beta_{k}}}\\ &\leq &c R^{\frac{s+\theta 2^*(s)}{2^*(s)\beta_{k}}} e^{\frac{C(\beta_{k}-1)}{\beta_{k}}}<+\infty. \end{eqnarray} $

根据序列$ \{\beta_{i}\} $满足的条件可知$ \mathop {\lim }\limits_{i \to \infty }\beta_{i} = \infty $, 因此, 从(3.20)式中可知存在某个常数$ C>0 $使得$ \|v\|_{L^{\infty}({{\Bbb R}} ^{N})}\leq C<+\infty $. 引理3.1得证.

定理1.2的证明    设$ u\in D^{1, 2}_{\alpha}({{\Bbb R}} ^{N}) $为方程(1.1)的解. 令

其中$ \beta = \frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu} $. 由于$ 0\leq \mu<(\frac{Q-2}{2})^{2} $, 则$ 0<\beta <\frac{Q-2}{2} $, 且$ \beta $是方程

的解. 计算可得

$ \begin{eqnarray} (\Delta_{x}+|x|^{2\alpha}\Delta_{y})u & = &(\Delta_{x}+|x|^{2\alpha}\Delta_{y})(d(z)^{-\beta}v)\\ & = &v[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})d(z)^{-\beta}] +d(z)^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v]\\ && +2\langle \nabla_{\alpha} d(z)^{-\beta}, \nabla_{\alpha} v\rangle, \end{eqnarray} $

其中

$ \begin{eqnarray} (\Delta_{x}+|x|^{2\alpha}\Delta_{y})d(z)^{-\beta} & = &\psi^{2}[\beta(\beta+1)d(z)^{-\beta-2}+\frac{Q-1}{d(z)}(-\beta)d(z)^{-\beta-1}]\\ & = &\psi^{2}[\beta(\beta+1)d(z)^{-\beta-2}-\beta(Q-1)d(z)^{-\beta-2}]\\ & = &\psi^{2}[\beta^{2}-\beta(Q-2)]d(z)^{-\beta-2}. \end{eqnarray} $

从而将$ u = d(z)^{-\beta}v $带入方程(1.1)的左边, 由(3.21)–(3.22)式可得

$ \begin{eqnarray} &&-(\Delta_{x}+|x|^{2\alpha}\Delta_{y})u-\mu\frac{\psi^{2}u}{d(z)^{2}}\\ & = &-v\psi^{2}[\beta^{2}-\beta(Q-2)]d(z)^{-\beta-2} -d(z)^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v]\\ && -2\langle \nabla_{\alpha} d(z)^{-\beta}, \nabla_{\alpha} v\rangle -\mu\frac{\psi^{2}}{d(z)^{2}}d(z)^{-\beta}v\\ & = &v\psi^{2}[\beta^{2}-\beta(Q-2)+\mu]d(z)^{-\beta-2} -d(z)^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v] -2\langle \nabla_{\alpha} d(z)^{-\beta}, \nabla_{\alpha} v\rangle\\ & = &-d(z)^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v] -2\langle \nabla_{\alpha} d(z)^{-\beta}, \nabla_{\alpha} v\rangle. \end{eqnarray} $

$ u = d(z)^{-\beta}v $带入方程(1.1)的右边

$ \begin{equation} \frac{\psi^{s}|u|^{2^*(s)-2}u}{d(z)^{s}} = \frac{\psi^{s}|d(z)^{-\beta}v|^{2^*(s)-2}d(z)^{-\beta}v}{d(z)^{s}} = \frac{\psi^{s} |v|^{2^*(s)-2}v}{d(z)^{s+\beta(2^*(s)-1)}}. \end{equation} $

结合(3.23)和(3.24)式可推出

在上式的两边分别乘以$ d(z)^{-\beta} $, 则有

$ v $是方程(3.2)的非平凡解. 由引理3.1知: 存在常数$ C>1 $使得对任意的$ R>0 $$ C^{-1}\leq v(z)\leq C $, $ \forall z\in B_{d}(0, R) $. 从而

$ \begin{equation} \frac{C^{-1}}{d(z)^{\beta}}\leq u(z)\leq \frac{C}{d(z)^{\beta}}, \quad \forall z\in B_{d(z)}(0, R), \end{equation} $

其中$ \beta = \frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu} $. 从而定理1.2中的(1.5)式得证.

下面证明(1.6)式, 即寻求解在无穷远点处的渐近性质.

定义Grushin几何下的球面反演变换$ \sigma:{{\Bbb R}} ^{N}\to {{\Bbb R}} ^{N} $$ \sigma (z) = \delta _{d(z)^{-2}}(z), \ \forall z\in{{\Bbb R}} ^{N}\backslash\{ 0\}. $反演$ \sigma $在下述意义下是保形映射, 即对任意的$ u\in C^1({{{\Bbb R}} }^N) $, $ z\in{{\Bbb R}} ^{N}\backslash\{ 0\} $, 有

$ \begin{equation} |\nabla _\alpha (u\circ \sigma )(z)|^2 = |J_\sigma (z)|^{\frac{2}{Q}}|(\nabla _\alpha u)(\sigma (z))|^2, \end{equation} $

其中$ J_{\sigma} = \rm{det}\frac{\partial \sigma}{\partial z} $$ \sigma $的Jacobian行列式, 并且满足$ |J_{\sigma }(z)| = d(z)^{-2Q} = \Gamma (z)^{\frac{2Q}{Q-2}} $, 这里的$ \Gamma (z) = \frac{1}{d(z)^{Q-2}} $是Grushin算子$ \Delta_{x}+|x|^{2\alpha}\Delta_{y} $的基本解. 由此, 保形映射可以诱导出如下的Kelvin型变换. 设$ u: {{\Bbb R}} ^N \to{{\Bbb R}} $, 其Kelvin型变换$ w: {{\Bbb R}} ^N\backslash \{0\}\to{{\Bbb R}} $定义为

$ \begin{equation} w(z) = \Gamma (z)u(\sigma (z)) = \frac{1}{d(z)^{Q-2}}u(\delta_{d(z)^{-2}}(z)), \quad \forall z\in{{\Bbb R}} ^{N}\backslash\{ 0\}. \end{equation} $

利用文献[22, 定理2.5]中的计算方法可以证明: 若$ u $是方程(1.1)的非平凡解, 则对任意的$ \phi \in C_0^\infty ({{\Bbb R}} ^{N} ) $, $ z\in {{\Bbb R}} ^{N} \backslash\{0\} $, 有下式成立

$ \begin{equation} \int _{{{\Bbb R}} ^{N}} \langle \nabla _{\alpha} w, \nabla _{\alpha} \phi \rangle {\rm d}z -\mu \int _{{{\Bbb R}} ^{N}} \frac{\psi(z)^2 w \phi }{d(z)^2}{\rm d}z = \int _{{{\Bbb R}} ^{N}} \frac{\psi^{s} |w|^{2^*(s)-2}w\phi }{d(z)^{s}}{\rm d}z, \end{equation} $

$ w $亦是方程(1.1)的非平凡解. 从而, 由(3.25)式可知: 存在$ C>0 $$ R>0 $使得

$ \begin{equation} \frac{C^{-1}}{d(z)^{\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}\leq w(z)\leq \frac{C}{d(z)^{\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}. \quad \forall z\in B_{d(z)}(0, R)\backslash\{0\}, \end{equation} $

即对任意的$ z\in B_{d(z)}(0, R)\backslash\{0\} $, 有

$ \begin{equation} \frac{C^{-1}}{d(z)^{-\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}\leq u(\delta_{d(z)^{-2}}(z))\leq \frac{C}{d(z)^{-\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}. \end{equation} $

$ \xi = \delta_{d(z)^{-2}}(z) $, 则$ d(\xi) = d(\delta_{d(z)^{-2}}(z)) = \frac{1}{d(z)} $, 从而当$ d(z)\to 0 $时有$ d(\xi)\to +\infty $. 所以, 当$ d(\xi)\to+\infty $时, 由(3.30)式可以得出

$ \begin{equation} \frac{C^{-1}}{d(\xi)^{\frac{Q-2}{2}+\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}\leq u(\xi)\leq \frac{C}{d(\xi)^{\frac{Q-2}{2}+\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}. \end{equation} $

所以, 当$ d(\xi)\to+\infty $时, 有

$ \begin{equation} u(\xi) = O\bigg(\frac{1}{d(\xi)^{\frac{Q-2}{2}+\sqrt{(\frac{Q-2}{2})^{2}-\mu}}}\bigg). \end{equation} $

即(1.6)式得证. 定理1.2证明完毕.

参考文献

Garofalo N .

Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension

J Differ Equa, 1993, 104, 117- 146

DOI:10.1006/jdeq.1993.1065      [本文引用: 1]

D'Ambrosio L .

Hardy inequalities related to Grushin-type operators

Proc Am Math Soc, 2004, 132 (3): 725- 734

URL     [本文引用: 1]

Kogoj A E , Sonner S .

Hardy type inequalities for Δλ-Laplacians

Complex Var Elliptic Equa, 2016, 61 (3): 422- 442

DOI:10.1080/17476933.2015.1088530     

Yang Q , Su D , Kong Y .

Improved Hardy inequalities for Grushin operators

J Math Anal Appl, 2015, 424, 321- 343

DOI:10.1016/j.jmaa.2014.11.010      [本文引用: 1]

Cao D , Han P .

Solutions to critical elliptic equations with multi-singular inverse square potentials

J Differ Equa, 2006, 224, 332- 372

DOI:10.1016/j.jde.2005.07.010      [本文引用: 1]

Cao D , Peng S .

A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms

J Differl Equ, 2003, 193, 424- 434

DOI:10.1016/S0022-0396(03)00118-9     

Jannelli E .

The role played by space dimension in elliptic critical problems

J Differl Equ, 1999, 156, 407- 426

DOI:10.1006/jdeq.1998.3589     

Ghoussoub N , Yuan C .

Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents

Trans Amer Math Soc, 2000, 352, 5703- 5743

DOI:10.1090/S0002-9947-00-02560-5     

Felli V , Terracini S .

Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity

Comm Partial Differ Equ, 2006, 31, 469- 495

DOI:10.1080/03605300500394439     

Kang D .

On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms

Nonlinear Anal, 2008, 68, 1973- 1985

DOI:10.1016/j.na.2007.01.024     

Kang D .

Positive minimizers of the best constants and solutions to coupled critical quasilinear systems

J Differ Equa, 2016, 260, 133- 148

DOI:10.1016/j.jde.2015.08.042      [本文引用: 1]

Ghoussoub N , Robert F , Shakerian S , Zhao M .

Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes

Comm Partial Differ Equa, 2018, 43 (6): 859- 892

DOI:10.1080/03605302.2018.1476528      [本文引用: 1]

Zhang J , Hsu T-S .

Nonlocal elliptic systems involving critical Sobolev-Hardy exponents and concave-convex nonlinearities

Taiwanese J of Math, 2019, 23 (6): 1479- 1510

URL    

Zhang J , Hsu T-S .

Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities

Acta Math Sci, 2020, 40B (3): 679- 699

DOI:10.1007/s10473-020-0307-2     

Zhang J , Hsu T-S .

Existence results for a fractional elliptic system with critical Sobolev-hardy exponents and concave-convex nonlinearities

Math Methods in the Applied Sci, 2020, 43 (6): 3488- 3512

DOI:10.1002/mma.6134     

Zhang J , Hsu T-S .

Multiple solutions for a fractional Laplacian system involving critical Sobolev-Hardy exponents and homogeneous term

Mathematical Modelling and Anal, 2020, 25 (1): 1- 20

DOI:10.3846/mma.2020.7704      [本文引用: 1]

Ekeland I .

On the variational principle

J Math Anal Appl, 1974, 47, 324- 353

DOI:10.1016/0022-247X(74)90025-0      [本文引用: 1]

Willem M . Minimax Theorems. Boston: Birkhauser, 1996

[本文引用: 1]

Mont R .

Sobolev inequalities for weighted gradients

Comm Partial Differ Equ, 2006, 31, 1479- 1504

DOI:10.1080/03605300500361594      [本文引用: 1]

Loiudice A. Local behavior of solutions to sub-elliptic problems with Hardy potential on Carnot groups. Mediterr J Math, 2018, 15, Article number: 81

[本文引用: 1]

Dou J , Niu P .

Hardy-Sobolev type inequalities for generalized Baouendi-Grushin operators

Miskolc Math Notes, 2007, 8 (1): 73- 77

DOI:10.18514/MMN.2007.142      [本文引用: 1]

Monti R , Morbidelli D .

Kelvin transform for Grushin operators and critical semilinear equations

Duke Math J, 2006, 131, 167- 202

URL     [本文引用: 1]

Zhang J , Yang D .

Asymptotic properties of solution to Grushin type operator problems with multi-singular potentials

J of Math (PRC), 2021, 41 (1): 79- 87

[本文引用: 1]

Zhang J, Yang D. Critical Hardy-Sobolev exponents problem with Grushin operator and Hardy-type singularity terms. Acta Applicandae Math, 2021, 172, Article number: 4. https://doi.org/10.1007/s10440-021-00399-1

[本文引用: 1]

/