数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 997-1012.

• 论文 • 上一篇    下一篇

含Hardy型势的临界Grushin算子方程解的存在性和渐近估计

张金国*(),杨登允()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2020-05-13 出版日期:2021-08-26 发布日期:2021-08-09
  • 通讯作者: 张金国 E-mail:jgzhang@jxnu.edu.cn;yangdengyun@139.com
  • 作者简介:杨登允, E-mail: yangdengyun@139.com
  • 基金资助:
    国家自然科学基金(11761049)

Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents

Jinguo Zhang*(),Dengyun Yang()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2020-05-13 Online:2021-08-26 Published:2021-08-09
  • Contact: Jinguo Zhang E-mail:jgzhang@jxnu.edu.cn;yangdengyun@139.com
  • Supported by:
    the NSFC(11761049)

摘要:

该文研究含Hardy型势和临界指数的退化椭圆方程 其中 $-(\Delta_{x}+|x|^{2\alpha}\Delta_{y})$ 是Grushin型退化算子,$\alpha>0, 2^*(s)=\frac{2(Q-s)}{Q-2}, Q=m+(\alpha+1) n$ 是空间 $\mathbb{R}^{m}\times\mathbb{R}^{n} $ 在伸缩变换 $\delta_{\lambda} $ 下的空间齐次维数.当 $0 \leq\mu <\mu_{G}:=(\frac{Q-2}{2})^{2} ,0\leq s<2$ 时,该文证明了上述方程非平凡解的存在性;并且给出了方程的解在原点和无穷远点的渐近性质,即当 $d (z)\to 0 $ 时,$ u (z)=O (d (z)^{-(\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu})})$;当 $ d (z)\to+\infty$ 时,$u (z)=O (d (z)^{-(\frac{Q-2}{2}+\sqrt{(\frac{Q-2}{2})^{2}-\mu})}) $.

关键词: Grushin型算子, Moser迭代, 渐近性质, Sobolev-Hardy临界指数

Abstract:

In this paper, we study the existence and asymptotic behavior of solutions for a class of degenerate elliptic equation involving Grushin-type operator and Hardy potentials where $-(\Delta_{x}+|x|^{2\alpha}\Delta_{y}) $ is the Grushin-type operator, $\alpha>0, 2^*(s)=\frac{2(Q-s)}{Q-2} $ is the critical Sobolev-Hardy exponent and $Q=m+(\alpha+1)n $ is the homogenous dimension for Grushin operator. If $0 \leq \mu<(\frac{Q-2}{2})^{2}, 0 < s <2$, we will prove the existence of nontrivial, nonnegative solutions for this degenerate problem, and give the asymptotic behavior of solutions, at the singularity and at infinity.

Key words: Grushin-type operator, Moser iteration, Asymptotic behavior, Critical Sobolev-Hardy exponents

中图分类号: 

  • O175.29