数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 997-1012.

• 论文 • 上一篇    下一篇

含Hardy型势的临界Grushin算子方程解的存在性和渐近估计

张金国*(),杨登允()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2020-05-13 出版日期:2021-08-26 发布日期:2021-08-09
  • 通讯作者: 张金国 E-mail:jgzhang@jxnu.edu.cn;yangdengyun@139.com
  • 作者简介:杨登允, E-mail: yangdengyun@139.com
  • 基金资助:
    国家自然科学基金(11761049)

Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents

Jinguo Zhang*(),Dengyun Yang()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2020-05-13 Online:2021-08-26 Published:2021-08-09
  • Contact: Jinguo Zhang E-mail:jgzhang@jxnu.edu.cn;yangdengyun@139.com
  • Supported by:
    the NSFC(11761049)

摘要:

该文研究含Hardy型势和临界指数的退化椭圆方程 其中 Δx+|x|2αΔy 是Grushin型退化算子,α>0,2s=2QsQ2,Q=m+α+1n 是空间 Rm×Rn 在伸缩变换 δλ 下的空间齐次维数.当 0μ<μG=Q2220s<2 时,该文证明了上述方程非平凡解的存在性;并且给出了方程的解在原点和无穷远点的渐近性质,即当 dz0 时,uz=OdzQ22Q222μ;当 dz+ 时,uz=OdzQ22+Q222μ.

关键词: Grushin型算子, Moser迭代, 渐近性质, Sobolev-Hardy临界指数

Abstract:

In this paper, we study the existence and asymptotic behavior of solutions for a class of degenerate elliptic equation involving Grushin-type operator and Hardy potentials where (Δx+|x|2αΔy) is the Grushin-type operator, α>0,2(s)=2(Qs)Q2 is the critical Sobolev-Hardy exponent and Q=m+(α+1)n is the homogenous dimension for Grushin operator. If 0μ<(Q22)2,0<s<2, we will prove the existence of nontrivial, nonnegative solutions for this degenerate problem, and give the asymptotic behavior of solutions, at the singularity and at infinity.

Key words: Grushin-type operator, Moser iteration, Asymptotic behavior, Critical Sobolev-Hardy exponents

中图分类号: 

  • O175.29