1 |
Garofalo N . Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J Differ Equa, 1993, 104, 117- 146
doi: 10.1006/jdeq.1993.1065
|
2 |
D'Ambrosio L . Hardy inequalities related to Grushin-type operators. Proc Am Math Soc, 2004, 132 (3): 725- 734
|
3 |
Kogoj A E , Sonner S . Hardy type inequalities for Δλ-Laplacians. Complex Var Elliptic Equa, 2016, 61 (3): 422- 442
doi: 10.1080/17476933.2015.1088530
|
4 |
Yang Q , Su D , Kong Y . Improved Hardy inequalities for Grushin operators. J Math Anal Appl, 2015, 424, 321- 343
doi: 10.1016/j.jmaa.2014.11.010
|
5 |
Cao D , Han P . Solutions to critical elliptic equations with multi-singular inverse square potentials. J Differ Equa, 2006, 224, 332- 372
doi: 10.1016/j.jde.2005.07.010
|
6 |
Cao D , Peng S . A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differl Equ, 2003, 193, 424- 434
doi: 10.1016/S0022-0396(03)00118-9
|
7 |
Jannelli E . The role played by space dimension in elliptic critical problems. J Differl Equ, 1999, 156, 407- 426
doi: 10.1006/jdeq.1998.3589
|
8 |
Ghoussoub N , Yuan C . Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 352, 5703- 5743
doi: 10.1090/S0002-9947-00-02560-5
|
9 |
Felli V , Terracini S . Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm Partial Differ Equ, 2006, 31, 469- 495
doi: 10.1080/03605300500394439
|
10 |
Kang D . On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms. Nonlinear Anal, 2008, 68, 1973- 1985
doi: 10.1016/j.na.2007.01.024
|
11 |
Kang D . Positive minimizers of the best constants and solutions to coupled critical quasilinear systems. J Differ Equa, 2016, 260, 133- 148
doi: 10.1016/j.jde.2015.08.042
|
12 |
Ghoussoub N , Robert F , Shakerian S , Zhao M . Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes. Comm Partial Differ Equa, 2018, 43 (6): 859- 892
doi: 10.1080/03605302.2018.1476528
|
13 |
Zhang J , Hsu T-S . Nonlocal elliptic systems involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Taiwanese J of Math, 2019, 23 (6): 1479- 1510
|
14 |
Zhang J , Hsu T-S . Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Acta Math Sci, 2020, 40B (3): 679- 699
doi: 10.1007/s10473-020-0307-2
|
15 |
Zhang J , Hsu T-S . Existence results for a fractional elliptic system with critical Sobolev-hardy exponents and concave-convex nonlinearities. Math Methods in the Applied Sci, 2020, 43 (6): 3488- 3512
doi: 10.1002/mma.6134
|
16 |
Zhang J , Hsu T-S . Multiple solutions for a fractional Laplacian system involving critical Sobolev-Hardy exponents and homogeneous term. Mathematical Modelling and Anal, 2020, 25 (1): 1- 20
doi: 10.3846/mma.2020.7704
|
17 |
Ekeland I . On the variational principle. J Math Anal Appl, 1974, 47, 324- 353
doi: 10.1016/0022-247X(74)90025-0
|
18 |
Willem M . Minimax Theorems. Boston: Birkhauser, 1996
|
19 |
Mont R . Sobolev inequalities for weighted gradients. Comm Partial Differ Equ, 2006, 31, 1479- 1504
doi: 10.1080/03605300500361594
|
20 |
Loiudice A. Local behavior of solutions to sub-elliptic problems with Hardy potential on Carnot groups. Mediterr J Math, 2018, 15, Article number: 81
|
21 |
Dou J , Niu P . Hardy-Sobolev type inequalities for generalized Baouendi-Grushin operators. Miskolc Math Notes, 2007, 8 (1): 73- 77
doi: 10.18514/MMN.2007.142
|
22 |
Monti R , Morbidelli D . Kelvin transform for Grushin operators and critical semilinear equations. Duke Math J, 2006, 131, 167- 202
|
23 |
Zhang J , Yang D . Asymptotic properties of solution to Grushin type operator problems with multi-singular potentials. J of Math (PRC), 2021, 41 (1): 79- 87
|
24 |
Zhang J, Yang D. Critical Hardy-Sobolev exponents problem with Grushin operator and Hardy-type singularity terms. Acta Applicandae Math, 2021, 172, Article number: 4. https://doi.org/10.1007/s10440-021-00399-1
|