Processing math: 0%

数学物理学报, 2021, 41(3): 666-685 doi:

论文

非线性临界Kirchhoff型问题的正基态解

成艺群,, 滕凯民,

Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem

Cheng Yiqun,, Teng Kaimin,

通讯作者: 滕凯民, E-mail: tengkaimin2013@163.com

收稿日期: 2020-04-17  

基金资助: 国家自然科学基金.  11501403
山西省留学回国择优项目.  2018
山西省自然科学基金面上项目.  201901D111085

Received: 2020-04-17  

Fund supported: the NSFC.  11501403
the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province.  2018
the NSF of Shanxi Province.  201901D111085

作者简介 About authors

成艺群,E-mail:1906157258@qq.com , E-mail:1906157258@qq.com

Abstract

In this paper, we consider the following Kirchhoff type problem

{(a+bR3|u|2dx)u+V(x)u=|u|p2u+ε|u|4u,xR3,uH1(R3),
(3.36)
where a>0, b>0, 4<p<6 and V(x)L32loc(R3) is a given nonnegative function such that lim. Under suitable conditions on V(x), we prove that the existence of ground state solutions for small \varepsilon.

Keywords: Kirchhoff type problem ; Critical nonlinearity ; Ground state

PDF (413KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

成艺群, 滕凯民. 非线性临界Kirchhoff型问题的正基态解. 数学物理学报[J], 2021, 41(3): 666-685 doi:

Cheng Yiqun, Teng Kaimin. Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem. Acta Mathematica Scientia[J], 2021, 41(3): 666-685 doi:

1 引言

本文研究如下Kirchhoff型问题

\begin{equation} \left\{\begin{array}{ll} { } -\Big(a+b\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)\Delta u+V(x)u = |u|^{p-2}u+\varepsilon|u|^4u, & x\in{{\Bbb R}} ^3, \\ u>0, \, \, u\in H^1({{\Bbb R}} ^3) \end{array}\right. \end{equation}
(1.1)

正基态解的存在性, 其中 a>0 , b>0 , 4<p<6 , \varepsilon>0 . 此外, V(x) 是一个非负函数且满足

(V_0):\quad V(x)\in L_{\rm loc}^{\frac{3}{2}}({{\Bbb R}} ^3), \quad\lim\limits_{|x|\rightarrow \infty}V(x) = V_{\infty}, \quad V(x)\geq V_0>0\, \, \, {\rm a.e.}\, \, x\in {{\Bbb R}} ^3.

问题(1.1) 与下面方程

\begin{equation} \rho\frac{\partial^{2}u}{\partial t^{2}}-\bigg(\frac{p_{0}}{h}+\frac{E}{2L}\int_{0}^{L}\bigg|\frac{\partial u}{\partial x}\bigg|^{2}{\rm d}x\bigg)\frac{\partial^{2}u}{\partial x^{2}} = f(u) \end{equation}
(1.2)

对应的稳态相关. 1983年, 作为经典D'Alembert波动方程的延伸, Kirchhoff[1]在研究拉伸弦的横向振动, 特别是考虑到横向振动引起的弦的长度变化时首次提出方程(1.2), 其中 u 表示变量, 且当 b 与弦的内在属性相关时, h 是外力, a 是初始应变量, 如Young's模.

近年来, 采用非线性分析的工具和变分方法, 许多学者对下列非线性Kirchhoff型方程

\begin{equation} \left\{\begin{array}{ll} { } -\Big(a+b\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)\Delta u+V(x)u = f(x, u), & { x\in{{\Bbb R}} ^3 , }\\ u\in H^1({{\Bbb R}} ^3) \end{array}\right. \end{equation}
(1.3)

进行了大量的研究, 建立了基态解, 束缚态解和半经典态解等的存在性和多重性. 例如: 当 V(x): = C 时, Xu和Chen[2]证明了方程(1.3) 具有径向基态解, 其中 f(x, u) 满足临界Berestycki-Lions型条件. 当 C = 0 时, 问题(1.3) 可简化为如下方程

\begin{equation} \left\{\begin{array}{ll} { } -\big(a+b\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)\Delta u = f(x, u), & { x\in{{\Bbb R}} ^3 , }\\ u\in H^1({{\Bbb R}} ^3), \end{array}\right. \end{equation}
(1.4)

Liu和Guo[3]研究了临界增长中具有一般非线性的问题(1.4) 的基态解的存在性. 当(1.4) 式中 f(x, u) = g(x)|u|^{2^{\ast}-2}u+\lambda h(x)|u|^{q-1}u 时, Li[4]通过Nehari法和变分法得到了问题(1.4) 的正基态解的存在性. 有关问题(1.4) 基态解的更多结果, 参看文献[5-7].

关于基态解的研究方面, 最近, Li和Ye[8]假设 V(x) 满足以下假设.

(ⅰ) V(x)\in{\cal C}({{\Bbb R}} ^3, {{\Bbb R}} ) 弱可微且满足 (\nabla V(x), x)\in L^{\infty}({{\Bbb R}} ^3)\cup L^{\frac{3}{2}}({{\Bbb R}} ^3)

V(x)-2(\nabla V(x), x)\geq0\, \, \, {\rm a.e.}\, \, x\in{{\Bbb R}} ^3;

(ⅱ) 对任意的 x\in{{\Bbb R}} ^3 , V(x)\leq\liminf\limits_{|y|\rightarrow \infty}V(y): = V_{\infty}<+\infty 且其在Lebesgue正测度的子集中是严格的;

(ⅲ) 存在 \bar{C}>0 使得

\bar{C} = \inf\limits_{u\in H^1({{\Bbb R}} ^3\backslash\{0\})}\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2+V(x)|u|^2}{\int_{{{\Bbb R}} ^3}|u|^2}>0,

采用单调性技巧, Pohozaev-Nehari流形和全局紧性引理证明了当 f(x, u) = |u|^{p-1}u , 2<p<5 时问题(1.3) 正基态解的存在性. Wu[9]利用Pohozaev流形证明了问题(1.3) 存在正基态解. 当 f(x, u) 在无穷远是次临界且在原点附近是超线性的, V(x) 满足与上面(ⅰ) 和(ⅱ) 相似的一些条件时, Guo[10]用变分方法证明了问题(1.3) 存在正基态解. 当 f(x, u) = K(x)|u|^4u+g(x, u) V(x) 满足渐近周期条件时, 作者们在文献[11]中证明了问题(1.3) 存在正基态解. 当 f(x, u) 在无穷远是次临界, 在原点是超线性的且满足Berestycki-Lions条件和位势 V(x) 满足与上面(ⅰ)–(ⅲ) 类似的一些条件时, Liu和Guo[12]利用Jeanjean建立的抽象临界点定理和一个新全局紧性引理证明了问题(1.3) 至少存在一个基态解. 随后, Tang和Chen[13]对位势 V(x)\in{\cal C}({{\Bbb R}} ^3, [0, \infty)) 提出一些更强的条件, 他们证明了问题(1.3) 存在一个Nehari-Pohozaev型的基态解. 后来, Chen和Tang[14]又证明了问题(1.3) 存在一个基态解, 其中 f(x, u) 满足一般的Berestycki-Lions假设和位势 V(x)\in{\cal C}({{\Bbb R}} ^3, [0, \infty)) 满足类似文献[13]的条件. Ye[15]证明了问题(1.3) 存在正基态解, 其中 f(x, u) = a(x)f(u)+u^5 V(x) 在无穷远处满足指数阶衰减. 当位势 V(x) 有一个井位势, Sun和Wu[16]得到了一类如下Kirchhoff型问题基态解的存在性

\left\{\begin{array}{ll} { } -\Big(a\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x+b\Big)\Delta u+\lambda V(x)u = f(x, u), \, \, \, x\in{{\Bbb R}} ^N, \\ u\in H^{1}({{\Bbb R}} ^{N}). \end{array}\right.

关于问题(1.3) 基态解的更多结果, 参看文献[17-26].

受上述文献的启发, 本文考虑具有小临界扰动项的问题(1.1) 基态解的存在性. 与上述文献相比, 我们只需求 V(x)\in L_{\rm loc}^{\frac{3}{2}}({{\Bbb R}} ^3) V(x) 可能在局部区域比 V_{\infty} 大. 这是本文主要结果的新奇之处, 其方法是基于约束极小化方法. 主要的困难在于非局部项 \int_{{{\Bbb R}} ^3}|\nabla u|^2\, {\rm d}x\Delta u 的出现, 由于 {{\Bbb R}} ^3 的无界性以及带有临界扰动项的非线性而缺乏紧性. 此外, 由于 V(x) 非径向对称, 故不能将问题限制在径向对称Sobolev空间 H_r^1({{\Bbb R}} ^3) 中, 其中 H_r^1({{\Bbb R}} ^3)\hookrightarrow L^q({{\Bbb R}} ^3) (2<s<6) 是紧的. 为克服这些困难, 必须进行更仔细的分析. 特别地, 对于序列 \{u_n\}\subset H^1({{\Bbb R}} ^3) u_n H^1({{\Bbb R}} ^3) 弱收敛于 u , 将仔细分析 \int_{{{\Bbb R}} ^3}|\nabla u_n|^2\, {\rm d}x \int_{{{\Bbb R}} ^3}|\nabla u|^2\, {\rm d}x 的不同来恢复紧性.

\varepsilon = 0 , 则问题(1.1) 有一个正基态解, 显然, 当 \varepsilon 趋于0时, 对于方程(1.1) 来说, 我们期望这种结果不会改变. 本文将试图证明该现象. 本文的主要结果如下.

定理1.1  假设 V(x) 满足 (V_0)

\begin{equation} V(x)\leq V_{\infty}\quad {\rm a.e.}\ \, \, x\in{{\Bbb R}} ^3, \end{equation}
(1.5)

那么存在 \varepsilon_0>0 , 对任意的 \varepsilon\in(0, \varepsilon_{0}) , 问题(1.1) 有一个正基态解.

当位势 V(x) 不满足(1.5) 式时, 通过考虑下列极限问题的正基态解

\begin{equation} \left\{\begin{array}{ll} { } -\Big(a+b\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)\Delta u+V_{\infty}u = |u|^{p-2}u, \, \, \, x\in{{\Bbb R}} ^3, \\ u\in H^1({{\Bbb R}} ^3) \end{array}\right. \end{equation}
(1.6)

证明问题(1.1) 的基态解的存在性. 事实上, 根据文献[18, 27], 在相差平移的情形下, 方程(1.6) 存在唯一的正的径向对称解, 记为 w . 现陈述如下结果.

定理1.2 假设 V(x) 满足 (V_0) , 如果存在 z\in{{\Bbb R}} ^3 满足

\begin{equation} \int_{{{\Bbb R}} ^3}V(x)|w_{z}|^{2}\, {\rm d}x<\int_{{{\Bbb R}} ^3} V_{\infty}w^2\, {\rm d}x, \end{equation}
(1.7)

其中 w_z(x): = w(x-z) , 且 w 是问题(1.6) 的正径向基态解. 那么对任意小的 \varepsilon , 问题(1.1) 存在正的基态解.

注意到当 V(x)\equiv V_{\infty} 时, 那么对任意 z\in{{\Bbb R}} ^3 , (1.7) 式成立.

此篇论文的结构如下. 在第2节, 将给出一些符号且回忆了一些学过的知识. 在第3节, 将给出定理1.1和定理1.2的证明.

2 准备工作

不失一般性, 假设 V_{\infty} = 1 . 在下文中, 将使用以下符号.

\bullet H^1({{\Bbb R}} ^3) 是Sobolev空间, 其内积和范数如下

(u, v): = \int_{{{\Bbb R}} ^3}(a\nabla u\nabla v+uv){\rm d}x, \quad\|u\|^2: = \int_{{{\Bbb R}} ^3}(a|\nabla u|^2+u^2){\rm d}x.

同时, 在这里我们将引入一种等价范数

\|u\|_V^2: = \int_{{{\Bbb R}} ^3}(a|\nabla u|^2+V(x)u^2){\rm d}x.

事实上

\int_{{{\Bbb R}} ^3}(a|\nabla u|^2+u^2){\rm d}x\leq C\int_{{{\Bbb R}} ^3}(a|\nabla u|^2+V(x)u^2){\rm d}x

显然成立. 反之, 根据 (V_0) 可得, 存在 R>0 使得当 |x|\geq R 时有 V(x)<2V_{\infty} , 从而有

\begin{eqnarray*} \int_{{{\Bbb R}} ^3}(a|\nabla u|^2+V(x)u^2){\rm d}x& = &\int_{{{\Bbb R}} ^3}a|\nabla u|^2{\rm d}x+\int_{|x|\geq R}V(x)u^2{\rm d}x+\int_{|x|\leq R}V(x)u^2{\rm d}x\\ &\leq&\int_{{{\Bbb R}} ^3}a|\nabla u|^2{\rm d}x+2\int_{|x|\geq R}V_{\infty}u^2{\rm d}x \\ &&+\int_{|x|\leq R}\big((V(x))^{\frac{3}{2}}{\rm d}x\big)^\frac{2}{3}\Big(\int_{{{\Bbb R}} ^3}u^6{\rm d}x\Big)^\frac{1}{3}\\ &\leq& C\int_{{{\Bbb R}} ^3}(a|\nabla u|^2+u^2){\rm d}x. \end{eqnarray*}

\bullet {\cal D}^{1, 2}({{\Bbb R}} ^3) 是通常的Sobolev空间, 其标准范数为 \|u\|_{{\cal D}}: = (\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^{\frac{1}{2}} .

\bullet {\cal L}^q({\cal O}) 表示Lebesgue空间, 其中 1\leq q\leq\infty , {\cal O}\subseteq{{\Bbb R}} ^3 是一个可测集. 当 {\cal O} {{\Bbb R}} ^3 的适当可测子集时, {\cal L}^q({\cal O}) 上的范数为 |\cdot|_{{\cal L}^q({\cal O})} . {\cal O} = {{\Bbb R}} ^3 时, 其范数为 |\cdot|_q .

\bullet c, c_i, C, C_i, \cdots 表示一些正常数.

问题(1.1) 对应的能量泛函是 I_{\varepsilon}:H^{1}({{\Bbb R}} ^3)\rightarrow {{\Bbb R}} 定义为

I_{\varepsilon}(u) = \frac{1}{2}\int_{{{\Bbb R}} ^3}(a|\nabla u|^{2}+V(x)u^{2}){\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla u|^{2}{\rm d}x\Big)^{2}-\frac{1}{p}\int_{{{\Bbb R}} ^3}|u|^{p}{\rm d}x-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x.

显然, I_{\varepsilon}\in C^1(H^1({{\Bbb R}} ^3), {{\Bbb R}} ) I_{\varepsilon} 的临界点是问题(1.1) 的弱解. 问题(1.1) 对应的极限方程如下

\begin{equation} \left\{\begin{array}{ll} { } -\Big(a+b\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)\Delta u+V_{\infty}u = |u|^{p-2}u+\varepsilon|u|^4u, \, \, \, x\in{{\Bbb R}} ^3, \\ u\in H^1({{\Bbb R}} ^3), \end{array}\right. \end{equation}
(2.1)

且其对应的泛函为 I_{\varepsilon, \infty}:H^1({{\Bbb R}} ^3)\rightarrow {{\Bbb R}} , 定义如下

I_{\varepsilon, \infty}(u) = \frac{1}{2}\int_{{{\Bbb R}} ^3}(a|\nabla u|^2+u^2){\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)^2-\frac{1}{p}\int_{{{\Bbb R}} ^3}|u|^p{\rm d}x-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x.

I_{\varepsilon} 具有相同性质的泛函定义如下

I(u) = \frac{1}{2}\int_{{{\Bbb R}} ^3}(a|\nabla u|^2+V(x)u^2){\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)^2-\frac{1}{p}\int_{{{\Bbb R}} ^3}|u|^p{\rm d}x,

I_{\infty}(u) = \frac{1}{2}\int_{{{\Bbb R}} ^3}(a|\nabla u|^2+u^2){\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)^2-\frac{1}{p}\int_{{{\Bbb R}} ^3}|u|^p{\rm d}x.

定义泛函 I , I_{\varepsilon} , I_{\infty} I_{\varepsilon, \infty} 上的Nehari流形如下

{\cal N} = \{u\in H_0^1({{\Bbb R}} ^3)\backslash\{0\}:I'(u)[u] = 0\}, \, \, \, \, \, {\cal N}_{\varepsilon} = \{u\in H_0^1({{\Bbb R}} ^3)\backslash\{0\}:I'_{\varepsilon}(u)[u] = 0\},

{\cal N}_{\infty} = \{u\in H^1({{\Bbb R}} ^3)\backslash\{0\}:I'_{\infty}(u)[u] = 0\}, \, \, \, \, \, {\cal N}_{\varepsilon, \infty} = \{u\in H^1({{\Bbb R}} ^3)\backslash\{0\}:I'_{\varepsilon, \infty}(u)[u] = 0\}.

定义

\begin{equation} m: = \inf\limits_{{\cal N}_{\infty}}I_{\infty}, \quad \quad m_{\varepsilon}: = \inf\limits_{N_{\varepsilon, \infty}}I_{\varepsilon, \infty}. \end{equation}
(2.2)

注意到, 当 \varepsilon>0 时有 m_{\varepsilon}\leq m . 事实上, 设 w 满足 I_{\infty}(w) = m 且存在 \tau_{\varepsilon}>0 使得 \tau_{\varepsilon}w\in {\cal N}_{\varepsilon, \infty} , 那么

\begin{equation} m_{\varepsilon}\leq I_{\varepsilon, \infty}(\tau_{\varepsilon}w)\leq I_{\infty}(\tau_{\varepsilon}w)\leq I_{\infty}(w) = m. \end{equation}
(2.3)

引理2.1  (ⅰ) 存在唯一 t_u>0 使得 t_{u}u\in{\cal N} , 有

I(t_{u}u) = \max\limits_{t>0}I(tu),

u\longmapsto t_u 是从 H^1({{\Bbb R}} ^3)\backslash\{0\} {{\Bbb R}} ^{+} 的连续映射. 若在 {\cal N}_{\infty} , {\cal N}_{\varepsilon} {\cal N}_{\varepsilon, \infty} 上分别考虑 I_{\infty} , I_{\varepsilon} I_{\varepsilon, \infty} , 类似的结论成立.

(ⅱ) 对任意的 u\in{\cal N}_{\varepsilon, \infty} , 存在正常数 C>0 使得 \|u\|\geq C>0 , 其中 C \varepsilon 无关.

(ⅲ) 对任意的 \varepsilon\in(0, \varepsilon_0) , 设 u 是约束在 {\cal N}_{\varepsilon, \infty} 上的 I_{\varepsilon, \infty} 的极小元, 那么存在正常数 C_1>0 使得 |u|_p^p\geq C_1>0 , 其中 C_1 \varepsilon 无关.

  根据标准的讨论, 可得(ⅰ) 成立.

(ⅱ) 对任意的 u\in {\cal N}_{\varepsilon, \infty} , 由Sobolev嵌入定理得

0 = \|u\|^{2}+b|\nabla u|_2^4-|u|_p^p-\varepsilon|u|_6^6\geq\|u\|^2-c_1\|u\|^p-c_2\varepsilon\|u\|^6,

\|u\|^2\leq c_1\|u\|^p+c_2\varepsilon\|u\|^6 , 其中 c_1, c_2>0 \varepsilon u 无关. 因此, 对任意的 \varepsilon>0 , 有

\begin{equation} \|u\|\geq C>0, \quad \forall u\in{\cal N}_{\varepsilon, \infty} \end{equation}
(2.4)

成立, 其中 C 是与 \varepsilon u 无关的正常数.

(ⅲ) 设 u I_{\varepsilon, \infty} 约束在 {\cal N}_{\varepsilon, \infty} 上的极小元, 可得

I_{\varepsilon, \infty}(u) = \frac{1}{4}\|u\|^{2}+\frac{p-4}{4p}|u|_{p}^{p}+\frac{1}{12}\varepsilon|u|_{6}^{6} = m_{\varepsilon},

由上式和(2.3) 式可得

\begin{equation} \|u\|^2\leq4m_{\varepsilon}+o(1)\leq4m. \end{equation}
(2.5)

从(2.4) 式可得 \|u\| 有正下界, 且从(2.5) 式可得 \|u\| 有正上界. 因此, 利用Sobolev嵌入定理, 可得

|u|^p_p = \|u\|^2+b\|\nabla u\|_2^4-\varepsilon|u|_6^6\geq\|u\|^2-c\varepsilon\|u\|^6\geq C^2-c_1\varepsilon\geq\frac{C^2}{2}\geq C_1, \quad\forall\varepsilon\in(0, \varepsilon_{0}),

其中 c, c_1>0 \varepsilon u 无关. 证毕.

命题2.1  下列估计成立

\begin{equation} m_{\varepsilon}\leq\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^{3}}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2: = {\cal S}_{a, b}, \, \forall\varepsilon>0, \end{equation}
(2.6)

其中 {\cal S} 是最佳Sobolev常数.

  注意到(2.8) 式中的 {\cal S}_{a, b} 是下列方程解的基态水平

\begin{equation} \left\{\begin{array}{ll} { } -\Big(a+b\int_{{{\Bbb R}} ^{3}}|\nabla u|^{2}{\rm d}x\Big)\Delta u = \varepsilon|u|^{4}u, &\, \, \, x\in{{\Bbb R}} ^3, \\ { } \lim\limits_{|x|\rightarrow \infty}u(x) = 0, & \end{array}\right. \end{equation}
(2.7)

\begin{eqnarray} {\cal S}_{a, b}& = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6 +\frac{a}{\varepsilon}{\cal S}^3}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2} {4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2{}\\ & = &\min\bigg\{\frac{a}{2}\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x+\frac{b}{4}\Big(\int_{{{\Bbb R}} ^3} |\nabla u|^2{\rm d}x\Big)^2-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x\, :\, u\in{\cal D}^{1, 2}({{\Bbb R}} ^3), {}\\ &&\int_{{{\Bbb R}} ^3}a|\nabla u|^2{\rm d}x+b\Big(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)^2 = \varepsilon\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x\bigg\}. \end{eqnarray}
(2.8)

事实上, 下列问题

\begin{equation} \left\{\begin{array}{ll} -\Delta u = |u|^{4}u, \, \, \, x\in{{\Bbb R}} ^3, \\ u\in {\cal D}^{1, 2}({{\Bbb R}} ^{3}) \end{array}\right. \end{equation}
(2.9)

的正解具有如下形式

\psi_{\delta, x_{0}} = \frac{(3\delta)^{\frac{1}{4}}}{(\delta+|x-x_{0}|^2)^{\frac{1}{2}}}, \quad\delta>0, \quad x_{0}\in{{\Bbb R}} ^3.

事实上, 最佳Sobolev常数 {\cal S} 可通过下式定义

{\cal S} = \inf\limits_{u\in{\cal D}^{1, 2}({{\Bbb R}} ^3)\backslash\{0\}}\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{|u|_6^2} = \inf\limits_{u\in{\cal D}^{1, 2}({{\Bbb R}} ^3)\backslash\{0\}, |u|_6 = 1}\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x.

注意到, 对任意的 u\in{\cal D}^{1, 2}({{\Bbb R}} ^3)\backslash\{0\} , 存在唯一的 t>0 使得 tu 满足

a\int_{{{\Bbb R}} ^3}|\nabla(tu)|^2{\rm d}x+b\Big(\int_{{{\Bbb R}} ^3}|\nabla(tu)|^2{\rm d}x\Big)^2 = \varepsilon\int_{{{\Bbb R}} ^3}|tu|^6{\rm d}x,

\begin{equation} \varepsilon t^{4}\int_{{{\Bbb R}} ^{3}}|u|^{6}{\rm d}x-bt^{2}\Big(\int_{{{\Bbb R}} ^{3}}|\nabla u|^{2}{\rm d}x\Big)^{2}-a\int_{{{\Bbb R}} ^{3}}|\nabla u|^{2}{\rm d}x = 0, \end{equation}
(2.10)

通过计算得

t^{2} = \frac{b(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^2+\sqrt{b^2(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^4+4a\varepsilon\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x}}{2\varepsilon\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x}.

因此, 由上式可知

\begin{eqnarray} &&\frac{a}{2}\int_{{{\Bbb R}} ^3}|\nabla(tu)|^2{\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla(tu)|^2{\rm d}x\Big)^2-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|tu|^6{\rm d}x{}\\ & = &\frac{a}{3}t^2\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x+\frac{b}{12}t^4 \Big(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)^2{}\\ & = &\frac{a}{3}\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\frac{b(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^2+\sqrt{b^2(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^4+4a\varepsilon\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x}}{2\varepsilon\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x}{}\\ &&+\frac{b}{12}\Big(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\Big)^2\bigg[\frac{b(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^2+\sqrt{b^2(\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x)^4+4a\varepsilon\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x}}{2\varepsilon\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x}\bigg]^2{}\\ & = &\frac{a}{6\varepsilon}\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}\bigg[b\bigg(\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}\bigg)^2+\sqrt{b^2\bigg(\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}\bigg)^4+4a\varepsilon\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}}\bigg]{}\\ &&+\frac{b}{12}\bigg\{\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{2\varepsilon(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}\bigg[b\bigg(\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}\bigg)^2+\sqrt{b^2\bigg(\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}\bigg)^4+4a\varepsilon\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2{\rm d}x}{(\int_{{{\Bbb R}} ^3}|u|^6{\rm d}x)^{\frac{1}{3}}}}\bigg]\bigg\}^2{}\\ &\geq&\frac{a}{6\varepsilon}{\cal S}(b{\cal S}^2+\sqrt{b^2{\cal S}^4+4a\varepsilon{\cal S}})+\frac{b}{12}\bigg[\frac{{\cal S}}{2\varepsilon}(b{\cal S}^2+\sqrt{b^2{\cal S}^4+4a\varepsilon{\cal S}})\bigg]^2{}\\ & = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^2}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^2}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2. \end{eqnarray}
(2.11)

另一方面, 关于Sobolev常数 {\cal S} , 设 U_0 是满足 |U_0|_6 = 1 的达到 {\cal S} 的函数, 那么存在唯一的 t_{U_0}>0 使得 t_{U_0}U_0 满足(2.10) 式. 因此, 通过计算, 有

\begin{eqnarray} &&\frac{a}{3}t_{U_0}^{2}\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x+\frac{b}{12}t_{U_0}^4 \Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^2{}\\ & = &\frac{a}{3}\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\frac{b(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x)^2+\sqrt{b^2(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x)^4+4a\varepsilon\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x}}{2\varepsilon}{}\\ &&+\frac{b}{12}\Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^2\bigg[\frac{b(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x)^2+\sqrt{b^2(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x)^4+4a\varepsilon\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x}}{2\varepsilon}\bigg]^2{}\\ & = &\frac{a}{3}\bigg[\frac{b}{2\varepsilon} \Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^3+\sqrt{\frac{b^2}{4\varepsilon^{2}} \Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^6+\frac{a}{\varepsilon}\Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^3}\bigg]{}\\ &&+\frac{b}{12}\bigg[\frac{b}{2\varepsilon} \Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^3+\sqrt{\frac{b^2}{4\varepsilon^{2}} \Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^6+\frac{a}{\varepsilon} \Big(\int_{{{\Bbb R}} ^3}|\nabla U_0|^2{\rm d}x\Big)^3}\bigg]^2{}\\ & = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2. \end{eqnarray}
(2.12)

从而由(2.11) 式和(2.12) 式可得(2.8) 式成立.

现在, 设径向函数 \bar{U}\in{\cal D}^{1, 2}({{\Bbb R}} ^3) 达到(2.8) 式的函数. 设 v_n(x) = \zeta(|x|)n^{\frac{1}{2}}\bar{U}(nx) , n\in{\Bbb N} , 其中 \zeta\in{\cal C}_0^{\infty}({{\Bbb R}} ^{+}, [0, 1]) 是一个截断函数, 且对 s\in[0, 1] \zeta(s) = 1 . 因此, 存在唯一的 t_n>0 满足 u_n: = t_nv_n\in{\cal N}_{\varepsilon, \infty} , 即

\begin{equation} a\|v_n\|^2+bt_n^2|\nabla v_n|_2^4 = t_n^{p-2}|v_n|_p^p+\varepsilon t_n^4|v_n|_6^6. \end{equation}
(2.13)

v_n 的定义可得

\begin{eqnarray*} |v_n-n^{\frac{1}{2}}\bar{U}(nx)|_6^6& = &\int_{{{\Bbb R}} ^3}\Big|\zeta(|x|)n^{\frac{1}{2}}\bar{U}(nx)-n^{\frac{1}{2}}\bar{U}(nx)\Big|^6{\rm d}x\\ & = &n^3\int_{{{\Bbb R}} ^3}\Big|(\zeta(|x|)-1)\bar{U}(nx)\Big|^6{\rm d}x\\ & = &\int_{{{\Bbb R}} ^3}\Big|[\zeta(\frac{|x|}{n})-1]\bar{U}(x)\Big|^6{\rm d}x, \end{eqnarray*}

利用Lebesgue控制收敛定理可得

\begin{equation} |v_n-n^{\frac{1}{2}}\bar{U}(nx)|_6\rightarrow0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {当 \, n\rightarrow \infty }. \end{equation}
(2.14)

类似可得

\begin{equation} |\nabla v_n-\nabla(n^{\frac{1}{2}}\bar{U}(nx))|_2\rightarrow0, \, \, \, {当\, n\rightarrow \infty }, \end{equation}
(2.15)

\begin{equation} v_n\rightarrow0\quad {在 \, \, L^2({{\Bbb R}} ^3) }, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {当 \, n\rightarrow \infty }. \end{equation}
(2.16)

由(2.16) 式和插值不等式可知, v_n\rightarrow0 L^p({{\Bbb R}} ^3) . 由(2.15) 式和(2.16) 式得, 当 n\rightarrow \infty 时有 \|v_n-n^{\frac{1}{2}}\bar{U}(nx)\|_{H^1}\rightarrow0 .

断言当 n\rightarrow \infty 时, t_n\rightarrow1 . 事实上, 从(2.13) 式可知, \{t_n\} 有界. 由(2.14)–(2.16) 式可得

a|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|_2^2+bt_n^2|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|_2^4 = o(1)+\varepsilon t_n^4|n^{\frac{1}{2}}\bar{U}(nx)|_6^6,

\begin{equation} a|\nabla\bar{U}|_2^2+bt_n^2|\nabla\bar{U}|_2^4 = \varepsilon t_n^4|\bar{U}|_6^6+o(1). \end{equation}
(2.17)

\bar{U} 的定义和(2.17) 式, 可推出

a|\nabla\bar{U}|_2^2+t_n^2(\varepsilon|\bar{U}|_6^6-a|\nabla\bar{U}|_2^2) = \varepsilon t_n^4|\bar{U}|_6^6+o(1),

\begin{equation} (1-t_n^2)a|\nabla\bar{U}|_2^2 = \varepsilon(t_n^2-1)t_n^2|\bar{U}|_6^6+o(1), \end{equation}
(2.18)

从而推出了 t_n\rightarrow1 . 因此, 有

\begin{eqnarray*} &&I_{\varepsilon, \infty}(u_n)-\bigg(\frac{a}{2}\int_{{{\Bbb R}} ^3}|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|^2{\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|^2{\rm d}x\Big)^2-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|n^{\frac{1}{2}}\bar{U}(nx)|^6{\rm d}x\bigg)\\ & = &\frac{a}{2}\int_{{{\Bbb R}} ^3}|\nabla u_n|^2{\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^3}|u_n|^2{\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla u_n|^2{\rm d}x\Big)^2-\frac{1}{p}\int_{{{\Bbb R}} ^3}|u_n|^p{\rm d}x-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|u_n|^6{\rm d}x\\ &&-\bigg(\frac{a}{2}\int_{{{\Bbb R}} ^3}|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|^2{\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|^2{\rm d}x\Big)^2-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|n^{\frac{1}{2}}\bar{U}(nx)|^6{\rm d}x\bigg)\\ & = &\frac{1}{2}\int_{{{\Bbb R}} ^3}|u_n|^2{\rm d}x-\frac{1}{p}\int_{{{\Bbb R}} ^3}|u_n|^p{\rm d}x\rightarrow0, \quad {当\; n\rightarrow \infty }. \end{eqnarray*}

注意到

\begin{eqnarray*} &&\frac{a}{2}\int_{{{\Bbb R}} ^3}|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|^2{\rm d}x+\frac{b}{4} \Big(\int_{{{\Bbb R}} ^3}|\nabla(n^{\frac{1}{2}}\bar{U}(nx))|^2{\rm d}x\Big)^2-\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|n^{\frac{1}{2}}\bar{U}(nx)|^6{\rm d}x\\ & = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+ \frac{a}{\varepsilon}{\cal S}^{3}}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+ \sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2\\ & = &{\cal S}_{a, b} \quad\quad \forall n\in{\Bbb N}, \end{eqnarray*}

因此, 由 m_{\varepsilon} 的定义可得出(2.6) 式.

推论2.1 对充分小的 \varepsilon>0 , 有下面估计成立

\begin{equation} m_{\varepsilon}<{\cal S}_{a, b}. \end{equation}
(2.19)

  由(2.6)式可知, m_{\varepsilon}\leq{\cal S}_{a, b} . 假设 m_{\varepsilon} = {\cal S}_{a, b} 成立, 由命题2.1可得, 当 u_n = t_nv_n(x) = t_n\zeta(|x|)n^{\frac{1}{2}}\bar{U}(nx)\in{\cal N}_{\varepsilon, \infty} 时, 其中 \bar{U} 是方程(2.8) 的一个极小元, 可得 t_n\rightarrow1 , v_n\rightarrow0 L^p({{\Bbb R}} ^3) , 其中 2\leq p<6 I_{\varepsilon, \infty}(u_n)\rightarrow {\cal S}_{a, b} .

利用引理2.1的(ⅲ) 可得, |t_nv_n|_p^p\geq C_1>0 . t_n\rightarrow1 可知, |v_n|_p^p\geq C_1>0 , 与 v_n\rightarrow0 L^p({{\Bbb R}} ^3) 矛盾. 因此(2.19) 式成立. 证毕.

对于极限问题(2.1), 有下面的存在性结果.

定理2.1  存在 \varepsilon_{0}>0 , 对任意的 \varepsilon\in(0, \varepsilon_{0}) , 问题(2.1) 存在正径向对称基态解 w_{\varepsilon} .

  令

H_r^1({{\Bbb R}} ^3) = \{u\in H^1({{\Bbb R}} ^3):\ u\ {是径向对称的} \}, \ {\cal N}_r = {\cal N}_{\varepsilon, \infty}\cap H_r^1({{\Bbb R}} ^3),

易证 m_{\varepsilon} = \inf\limits_{u\in{\cal N}_r}I_{\varepsilon, \infty}(u) . \{u_n\}_n {\cal N}_r 的一个极小化序列且满足

a\|u_n\|_{{\cal D}}^2+|u_n|^2_2+b|\nabla u_n|_2^4 = |u_n|^p_p+\varepsilon|u_n|^6_6,

I_{\varepsilon, \infty}(u_n) = \frac{a}{4}\|u_n\|_{{\cal D}}^2+\frac{1}{4}|u_n|^2_2+\frac{p-4}{4p}|u_n|^p_p+\frac{\varepsilon}{12}|u_n|^6_6 = m_{\varepsilon}+o(1).

m_{\varepsilon}\leq m p>4 , 这导出了 \{u_n\}_n H_r^1({{\Bbb R}} ^3) 上有界. 因此, 通过选取子列, 仍记为 \{u_n\}_n , 假设存在 w_{\varepsilon}\in H_r^1({{\Bbb R}} ^3) 使得

\begin{equation} \left\{ \begin{array}{ll} u_n \rightharpoonup w_{\varepsilon}, & {在 H_r^1({{\Bbb R}} ^3) \, 和\, L^6({{\Bbb R}} ^3) , } \\ u_n \rightarrow w_{\varepsilon}, & {在 L^q({{\Bbb R}} ^3), 2<q<6 , }\\ u_n \rightarrow w_{\varepsilon}, & { {\rm a.e.}\ \, \, x\in{{\Bbb R}} ^3 .} \end{array} \right. \end{equation}
(2.20)

断言当 n\rightarrow \infty 时, I'_{\varepsilon, \infty}(u_n)\rightarrow0 . G(u) = I_{\varepsilon, \infty}' (u)[u]+1, \forall u\in{\cal N}_r = \{u\in H_r^1({{\Bbb R}} ^3)\backslash\{0\}:G(u) = 1\} , 显然由 p>2 可得 G(u)\in{\cal C}^{2}(H^1({{\Bbb R}} ^3), {{\Bbb R}} ) . 通过引理2.1 (ⅱ), 可得

\begin{equation} \langle G' (u), u\rangle = 2\|u\|^2+4b|\nabla u|_2^4-p|u|_p^p-6\varepsilon|u|_6^6 = -2\|u\|^2+(4-p)|u|_p^p-2\varepsilon|u|_6^6\leq-2C^2<0, \end{equation}
(2.21)

这意味着对任意的 u\in{\cal N}_{\varepsilon, \infty} G'(u)\neq0 . 由于 I_{\varepsilon, \infty}(u_n)\rightarrow m_{\varepsilon} , 利用Ekeland变分原理(参见文献[28, 定理8.5])可得: 对于 \delta = \frac{1}{\sqrt{n}} , 存在 v_n\in{\cal N}_{\varepsilon, \infty} 使得

\|u_n-v_n\|\leq\frac{2}{\sqrt{n}}, \quad \min\limits_{\lambda\in{{\Bbb R}} }\|I_{\varepsilon, \infty}' (v_n)-\lambda G' (v_n)\|\leq\frac{8}{\sqrt{n}}.

从而, 利用 I_{\varepsilon, \infty}' G' 的连续性, 不妨将 v_n 替换为 u_n , 易得

\begin{equation} I'_{\varepsilon, \infty}(u_n)[v] = \lambda_{n}G'(u_n)[v]+o(1)\|v\|, \quad \forall v\in H_r^1({{\Bbb R}} ^3), \end{equation}
(2.22)

其中 \lambda_{n}\in{{\Bbb R}} . 选取 v = u_n\in{\cal N}_r , 可得

\begin{equation} 0 = I'_{\varepsilon, \infty}(u_n)[u_n] = \lambda_{n}G'(u_n)[u_n]+o(1)\|u_n\|. \end{equation}
(2.23)

\{u_n\} 的有界性和(2.21) 式可得 \lambda_{n} = o(1) . 因此, 由(2.22) 式可知

\begin{eqnarray} &&a\int_{{{\Bbb R}} ^3}\nabla u_n\cdot\nabla v{\rm d}x+\int_{{{\Bbb R}} ^3}u_n v{\rm d}x+b\int_{{{\Bbb R}} ^3}|\nabla u_n|^2{\rm d}x\int_{{{\Bbb R}} ^3}\nabla u_n\cdot\nabla v{\rm d}x -\int_{{{\Bbb R}} ^3}|u_n|^{p-2}u_nv{\rm d}x{}\\ &&-\varepsilon\int_{{{\Bbb R}} ^3}|u_n|^4u_nv{\rm d}x = o(1)\|v\|, \quad \forall v\in H_r^1({{\Bbb R}} ^3), \end{eqnarray}
(2.24)

断言成立.

w_n: = u_n-w_{\varepsilon} , 欲证当 n\rightarrow \infty 时, 有 \|w_n\|_{{\cal D}}\rightarrow0 . 存在一个直到子序列, 仍记为 w_n , 假设 \lim\limits_{n\rightarrow \infty}\|w_n\|_{{\cal D}} = l_1\geq0 .

由(2.20) 式, Brezis-Lieb引理和 u_n\in {\cal N}_r 可推导出

a\|u_n\|_{{\cal D}}^2+|u_n|^2_2+b\|u_n\|_{{\cal D}}^4-|u_n|^p_p-\varepsilon|u_n|^6_6 = o(1),

\|u_n\|^2 = \|w_{\varepsilon}\|^2+\|w_n\|^2+o(1),

\|u_n\|_{{\cal D}}^4 = \|w_{\varepsilon}\|_{{\cal D}}^4+\|w_n\|_{{\cal D}}^4+2\|w_{\varepsilon}\|_{{\cal D}}^2\|w_n\|_{{\cal D}}^2+o(1),

|u_n|^6_6 = |w_n|^6_6+|w_{\varepsilon}|^6_6+o(1), \quad |u_n|_p^p\rightarrow |w_{\varepsilon}|_p^p.

因此

\begin{eqnarray} && a\|w_n\|_{{\cal D}}^2+|w_n|^2_2+a\|w_{\varepsilon}\|_{{\cal D}}^2+|w_{\varepsilon}|^2_2+b\|w_n\|_{{\cal D}}^4 +b\|w_{\varepsilon}\|_{{\cal D}}^4 {}\\ &&+2bl_1^2\|w_{\varepsilon}\|_{{\cal D}}^2 -\varepsilon|w_{\varepsilon}|^6_6-\varepsilon|w_n|^6_6-|w_{\varepsilon}|^p_p = o(1). \end{eqnarray}
(2.25)

利用(2.24) 式, 有

\begin{equation} a\|w_{\varepsilon}\|_{{\cal D}}^2+|w_{\varepsilon}|^2_2+bl_1^2\|w_{\varepsilon}\|_{{\cal D}}^2+b\|w_{\varepsilon}\|_{{\cal D}}^4-\varepsilon|w_{\varepsilon}|^6_6-|w_{\varepsilon}|^p_p = 0. \end{equation}
(2.26)

由(2.25) 式和(2.26) 式可得

\begin{equation} a\|w_n\|_{{\cal D}}^2+|w_n|^2_2+b\|w_n\|_{{\cal D}}^4+bl_1^2\|w_{\varepsilon}\|_{{\cal D}}^2-\varepsilon|w_n|^6_6 = o(1). \end{equation}
(2.27)

若当 n\rightarrow \infty 时, |w_n|_6\rightarrow0 . 由(2.27) 式得 w_n\rightarrow0 H_r^1({{\Bbb R}} ^3) , 故 l_1 = 0 .

\lim\limits_{n\rightarrow \infty}|w_n|_6\neq0 , 假设 l_2 = \lim\limits_{n\rightarrow \infty}|w_n|^6_6>0 .

从(2.27) 式和 {\cal S}l_2^{\frac{1}{3}}\leq l_1^2 , 可推导出 al_1^2+bl_1^4\leq\varepsilon l_2 \varepsilon l_2\geq al_1^2+bl_1^4\geq a{\cal S}l_2^{\frac{1}{3}}+b{\cal S}^{2}l_2^{\frac{2}{3}}, 这意味着 \varepsilon l_2^{\frac{2}{3}}-b{\cal S}^2l_2^{\frac{1}{3}}-a{\cal S}\geq0,

\begin{equation} l_2^{\frac{1}{3}}\geq\frac{b{\cal S}^2+\sqrt{b^2{\cal S}^4+4\varepsilon a{\cal S}}}{2\varepsilon}. \end{equation}
(2.28)

由(2.26) 式可得

\begin{eqnarray*} m_{\varepsilon}+o(1)& = &I_{\varepsilon, \infty}(u_n)-\frac{1}{6}\langle I'_{\varepsilon, \infty}(u_n), u_n\rangle\\ & = &\frac{a}{3}\|u_n\|_{{\cal D}}^2+\frac{1}{3}|u_n|^2_2+\frac{b}{12}\|u_n\|^4_{{\cal D}}+\frac{p-6}{6p}|u_n|^p_p\\ & = &\frac{a}{3}(\|w_{\varepsilon}\|_{{\cal D}}^2+\|w_n\|_{{\cal D}}^2)+\frac{1}{3}(|w_n|^2_2+|w_{\varepsilon}|^2_2)+\frac{b}{12}(\|w_n\|_{{\cal D}}^4+\|w_{\varepsilon}\|_{{\cal D}}^4+2l_1^2\|w_{\varepsilon}\|_{{\cal D}}^2)\\ &&+\frac{p-6}{6p}|w_{\varepsilon}|^p_p+o(1)\\ &\geq&\frac{a}{3}\|w_n\|_{{\cal D}}^2+\frac{b}{12}\|w_n\|_{{\cal D}}^4+\frac{1}{3}(a\|w_{\varepsilon}\|_{{\cal D}}^2+|w_{\varepsilon}|^2_2)+\frac{b}{12}\|w_{\varepsilon}\|_{{\cal D}}^4+\frac{b}{6}l_1^2\|w_{\varepsilon}\|_{{\cal D}}^2\\ &&+\frac{p-6}{6p}|w_{\varepsilon}|^p_p+o(1)\\ &\geq&\frac{a}{3}\|w_n\|_{{\cal D}}^2+\frac{b}{12}\|w_n\|_{{\cal D}}^4+\frac{p-4}{4p}|w_{\varepsilon}|^p_p+o(1)\\ &\geq&\frac{a}{3}l_1^2+\frac{b}{12}l_1^4, \end{eqnarray*}

结合(2.28) 式, 有

\begin{eqnarray*} m_{\varepsilon}&\geq&\frac{a}{3}{\cal S}l_2^{\frac{1}{3}}+\frac{b}{12}{\cal S}^2l_2^{\frac{2}{3}}\\ & \geq&\frac{a}{3}{\cal S}\frac{b{\cal S}^2+\sqrt{b^2{\cal S}^4+4\varepsilon a{\cal S}}}{2\varepsilon}+\frac{b}{12}{\cal S}^2 \bigg(\frac{b{\cal S}^{2}+\sqrt{b^2{\cal S}^4+4\varepsilon a{\cal S}}}{2\varepsilon}\bigg)^2\\ & = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2\\ & = &{\cal S}_{a, b}. \end{eqnarray*}

这与(2.19) 式矛盾. 因此可得

\begin{equation} u_n\rightarrow w_{\varepsilon}\, \, {在}\, \, H_r^1({{\Bbb R}} ^3). \end{equation}
(2.29)

由(2.24) 和(2.29) 式, 可知 w_{\varepsilon}\in H_r^1({{\Bbb R}} ^3) 是极小化函数且使得 w_{\varepsilon} 是下面方程的解

\begin{equation} -(a+b|\nabla u|_2^2)\triangle u+u = |u|^{p-2}u+\varepsilon|u|^4u, \, \, \, x\in{{\Bbb R}} ^3. \end{equation}
(2.30)

为证明 w_{\varepsilon} 是正的, 注意到 |w_{\varepsilon}| 也是 I_{\varepsilon, \infty} 约束在 {\cal N}_{\varepsilon, \infty} 上的极小元, 故可假设 w_{\varepsilon}\geq0 . 另外, 由 w_{\varepsilon} 是(2.30) 的解, 由强极值原理可得 w_{\varepsilon}>0 .

引理2.2

\lim\limits_{\varepsilon\rightarrow0}m_{\varepsilon} = m.

  设 w_{\varepsilon} m_{\varepsilon} 的极小元, 其中 \varepsilon\in(0, \varepsilon_0) w_{\varepsilon} 是定理2.1得到的解. 选取 t_{\varepsilon}>0 使得 t_{\varepsilon}w_{\varepsilon}\in{\cal N}_{\infty} , 即

\begin{equation} \|w_{\varepsilon}\|^2+bt_{\varepsilon}^2|\nabla w_{\varepsilon}|_2^4 = t_{\varepsilon}^{p-2}|w_{\varepsilon}|_p^p. \end{equation}
(2.31)

由引理2.1(ⅲ) 的证明, 易得 \|w_{\varepsilon}\|^2\leq4m , 这推出了 |\nabla w_{\varepsilon}|_2 有界. 另外, 由引理2.1(ⅲ) 可知 |w_{\varepsilon}|_p^p\geq C_1>0 . 因此从(2.31) 式可推出

\begin{equation} 4m\geq t_{\varepsilon}^{p-2}|w_{\varepsilon}|_p^p-bt_{\varepsilon}^2|\nabla w_{\varepsilon}|_2^4\geq C_1t_{\varepsilon}^{p-2}-bt_{\varepsilon}^2\|w_{\varepsilon}\|^4\geq C_1t_{\varepsilon}^{p-2}-16bm^2t_{\varepsilon}^2. \end{equation}
(2.32)

4<p<6 , 可得 \{t_{\varepsilon}\} 有界. 因此, 由(2.3) 式可得

\begin{eqnarray} m_{\varepsilon}\leq m&\leq& I_{\infty}(t_{\varepsilon}w_{\varepsilon}) = I_{\varepsilon, \infty}(t_{\varepsilon}w_{\varepsilon})+\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|t_{\varepsilon}w_{\varepsilon}|^6{\rm d}x {}\\ & \leq& I_{\varepsilon, \infty}(w_{\varepsilon})+\frac{\varepsilon}{6}\int_{{{\Bbb R}} ^3}|t_{\varepsilon}w_{\varepsilon}|^6{\rm d}x = m_{\varepsilon}+C \varepsilon. \end{eqnarray}
(2.33)

上式令 \varepsilon\rightarrow0 , 可得结论成立.

3 基态解的存在性

本节主要通过分析在水平 c 上的 (PS)_c 序列来证明问题(1.1) 基态解的存在性, 其中 c 小于极限问题(2.1) 的基态能量值.

引理3.1  设 \{u_n\}_n I_{\varepsilon} (PS)_c 序列, 那么 \{u_n\}_n H^1({{\Bbb R}} ^3) 上有界且 c\geq0 .

  由 \{u_n\}_n I_{\varepsilon} (PS)_c 序列, 可得

\begin{equation} c+o(1)\|u_n\|_{V}\geq I_{\varepsilon}(u_{n})-\frac{1}{4}I'_{\varepsilon}(u_n)[u_n] = \frac{1}{4}\|u_{n}\|_{V}^{2}+\frac{p-4}{4p}|u_{n}|_{p}^{p}+\frac{\varepsilon}{12}|u_{n}|_{6}^{6}, \end{equation}
(3.1)

这蕴含了 \|u_n\|_V^2\leq4c+o(1)\|u_n\|_{V}. 因此, \{u_n\}_n H^1({{\Bbb R}} ^3) 有界. 由 4<p<6 和(3.1) 式知 c\geq0 .

命题3.1  假设 V(x) 满足条件 (V_0) 和(1.5). 设 \{u_n\}_n I_{\varepsilon} 约束在 {\cal N}_{\varepsilon} (PS)_c 序列. 若对任意的 \varepsilon\in(0, \varepsilon_0) , 有 c<m_{\varepsilon} , 则 \{u_n\}_n H^1({{\Bbb R}} ^3) 中是相对紧的.

  设 \{u_n\}_n I_{\varepsilon} 约束在 {\cal N}_{\varepsilon} 上的 (PS)_c 序列, 由引理3.1知, \{u_n\}_n H^1({{\Bbb R}} ^3) 中有界. 令 \rho_n(x): = V(x)|u_n|^2+|u_n|^p+\varepsilon|u_n|^6\in L^1({{\Bbb R}} ^3) , 则 \{\rho_n\} L^1({{\Bbb R}} ^3) 中有界. 因此, 通过选择子序列, 可假设 |\rho_n|_1\rightarrow l, n\rightarrow \infty, 于是得到 l>0 , 否则, 有 I_{\varepsilon}(u_n)\rightarrow0 , 这与 I_{\varepsilon}(u_n)\rightarrow c 相矛盾. 事实上, 由 \{u_n\}_n (PS)_c 序列且在 H^1({{\Bbb R}} ^3) 中有界, 可得

I_{\varepsilon}'(u_n)[u_n] = o(1)\|u_n\|_{V} = o(1),

这意味着 \|u_n\|_V\rightarrow0 , 因而有 I_{\varepsilon}(u_n)\rightarrow0 .

现在, 利用文献[29] 中的集中紧性原理去建立序列 {\rho_n} 的紧性.

(1) (消失性)   若 {\rho_n} 消失, 则 \{u_n^2\} 也消失, 即存在 R>0 使得

\lim\limits_{n\rightarrow \infty}\sup\limits_{y\in{{\Bbb R}} ^3}\int_{B_R(y)}|u_n|^2{\rm d}x = 0.

利用消失引理[28, 引理1.21]可得, 对于 2<r<6 , 有 u_n\rightarrow0 L^r({{\Bbb R}} ^3) . 于是

|u_n|_p^p\rightarrow0, \, \, \, \

这意味着

\begin{equation} I_{\varepsilon}(u_n) = \frac{1}{2}\|u_n\|_{V}^2+\frac{b}{4}\|u_n\|_{{\cal D}}^4-\frac{\varepsilon}{6}|u_n|_6^6+o(1) \end{equation}
(3.2)

\begin{equation} \|u_n\|_{V}^2+b\|u_n\|_{{\cal D}}^4-\varepsilon|u_n|_6^6 = o(1). \end{equation}
(3.3)

因此, 可假设

\|u_n\|_{{\cal D}}^2\rightarrow t_1>0, \, \, \, \, \, \, |u_n|_6^6\rightarrow t_2>0, \, \, {当 \, n\rightarrow \infty }.

然后由(3.3) 式和 {\cal S}t_{2}^{\frac{1}{3}}\leq t_{1}^{2} , 可推导出下式

\varepsilon t_{2}\geq at_{1}^{2}+bt_{1}^{4}+o(1)\geq a{\cal S}t_{2}^{\frac{1}{3}}+b{\cal S}^{2}t_{2}^{\frac{2}{3}},

t_2^{\frac{1}{3}}\geq\frac{b{\cal S}^2+\sqrt{b^2{\cal S}^4+4\varepsilon a{\cal S}}}{2\varepsilon}.

另一方面, 有

\begin{eqnarray*} c+o(1)& = &I_{\varepsilon}(u_n)-\frac{1}{6}\langle I'_{\varepsilon}(u_n), u_n\rangle\\ & = &\frac{1}{2}\|u_n\|_{V}^2+\frac{b}{4}\|u_n\|_{{\cal D}}^4-\frac{\varepsilon}{6}|u_n|_6^6-\frac{1}{6}\|u_n\|_{V}^2-\frac{b}{6}\|u_n\|_{{\cal D}}^4+\frac{\varepsilon}{6}|u_n|_6^6+o(1)\\ &\geq&\frac{a}{3}\|u_n\|_{{\cal D}}^2+\frac{b}{12}\|u_n\|_{{\cal D}}^4 = \frac{a}{3}t_1^2+\frac{b}{12}t_1^4+o(1)\\ &\geq&\frac{a}{3}{\cal S}\frac{b{\cal S}^{2}+\sqrt{b^{2}{\cal S}^{4}+4\varepsilon a{\cal S}}}{2\varepsilon}+\frac{b}{12}{\cal S}^2 \bigg(\frac{b{\cal S}^{2}+\sqrt{b^{2}{\cal S}^{4}+4\varepsilon a{\cal S}}}{2\varepsilon}\bigg)^{2}\\ & = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^{3}+\sqrt{\frac{b^{2}}{4\varepsilon^{2}}{\cal S}^{6}+\frac{a}{\varepsilon}{\cal S}^{3}}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^{3}+\sqrt{\frac{b^{2}}{4\varepsilon^{2}}{\cal S}^{6}+\frac{a}{\varepsilon}{\cal S}^{3}}\bigg)^{2}\\ & = &{\cal S}_{a, b}>m_{\varepsilon}, \end{eqnarray*}

这与 c<m_{\varepsilon} 矛盾. 因此, 消失性不会发生.

(2) (二分性)   证明二分性不会发生. 用反证法, 假设存在 \alpha\in(0, l) \{x_n\}\subset{{\Bbb R}} ^3 使得对任意 r>R_{\varepsilon} r'>R_{\varepsilon} , 有

\liminf\limits_{n\rightarrow \infty}\int_{B_r(x_n)}\rho_n{\rm d}x\geq\alpha-\varepsilon, \quad\liminf\limits_{n\rightarrow \infty}\int_{B_{r'}^c(x_n)}\rho_n{\rm d}x\geq(l-\alpha)-\varepsilon.

因此, 这里存在 \varepsilon_{n}\rightarrow0 , r_n\rightarrow +\infty r'_n = 4r_n , 所以

\begin{equation} \int_{B_{r_n}(x_n)}\rho_n{\rm d}x\geq\alpha-\varepsilon_{n}, \, \, \, \int_{B_{r'_n}^c(x_n)}\rho_n{\rm d}x\geq(l-\alpha)-\varepsilon_{n}, \end{equation}
(3.4)

这意味着

\begin{equation} \int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}\rho_{n}{\rm d}x = \int_{B_{r'_n}(x_n)}\rho_{n}{\rm d}x-\int_{B_{r_n}(x_n)}\rho_{n}{\rm d}x\leq\alpha+\varepsilon_{n}-(\alpha-\varepsilon_{n}) = 2\varepsilon_{n}. \end{equation}
(3.5)

\varphi_{0}\in{\cal C}^{\infty}({{\Bbb R}} _{+}) 是一个截断函数且满足 0\leq\varphi_{0}\leq1 , 当 2\leq s\leq3 \varphi_{0}(s) = 1 , 当 s\leq1 s\geq4 \varphi_{0}(s) = 0 |\varphi'_{0}(s)|\leq2 . 假设 \varphi_{n}(x) = \varphi_{0}(\frac{|x-x_n|}{r_n}) , 可得

\begin{eqnarray*} && \int_{{{\Bbb R}} ^3}\Big(|\nabla(\varphi_{n}u_n)|^2+V(x)|\varphi_{n}u_n|^2\Big){\rm d}x\\ & = &\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}\Big(|\nabla\varphi_{n}\cdot u_n+\varphi_{n}\cdot\nabla u_n|^2+ \varphi_{n}^2V(x)|u_n|^2\Big){\rm d}x\\ &\leq&\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}\Big(|\nabla\varphi_{n}|^2|u_n|^2+2\nabla\varphi_{n}\cdot\nabla u_n\cdot u_n+|\nabla u_n|^2+V(x)|u_n|^2\Big){\rm d}x, \end{eqnarray*}

其中

\begin{eqnarray*} && \int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}V(x)|u_n|^2{\rm d}x\\ & = &\bigg(\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}(V(x))^{\frac{3}{2}}{\rm d}x\bigg)^{\frac{2}{3}}\bigg(\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}u_n^6{\rm d}x\bigg)^{\frac{1}{3}}\\ &\leq &C\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}u_n^2{\rm d}x\leq C_1, \end{eqnarray*}

\bigg(\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}|\nabla\varphi_{n}|^2|u_n|^2\bigg)^{\frac{1}{2}}\leq\frac{2}{r_n}\bigg(\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}|u_n|^2\bigg)^{\frac{1}{2}}\leq C.

\varphi_{n} 的定义和Hölder不等式, 可推导出

\begin{eqnarray} &&\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}u_n\nabla u_n\nabla\varphi_{n}{\rm d}x{}\\ &\leq&\frac{2}{r_n}\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}|u_n||\nabla u_n|{\rm d}x{}\\ &\leq&\frac{2}{r_n}\bigg(\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}|u_n|^2{\rm d}x\bigg)^{\frac{1}{2}}\bigg(\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}|\nabla u_n|^2{\rm d}x\bigg)^{\frac{1}{2}}{}\\ &\leq&\frac{C}{r_n} = o(1). \end{eqnarray}
(3.6)

类似地, 有

\begin{equation} \int_{B_{2r_n}(x_n)\backslash B_{r_n}(x_n)}u_n\nabla u_n\nabla\varphi_{n}{\rm d}x = o(1). \end{equation}
(3.7)

因此, 很容易得到 \varphi_{n}u_n\in H^1({{\Bbb R}} ^3)

\begin{equation} \langle I'_{\varepsilon}(u_n), \varphi_{n}u_n\rangle\rightarrow0, \, \, {当}\, \, n\rightarrow \infty. \end{equation}
(3.8)

A: = \lim\limits_{n\rightarrow \infty}\|u_n\|_{{\cal D}}^2>0 , 断言

\begin{eqnarray} && a\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}|\nabla u_n|^2{\rm d}x+bA\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}|\nabla u_n|^2{\rm d}x {}\\ &&+\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}V(x)|u_n|^2{\rm d}x = \int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}(|u_n|^p+\varepsilon|u_n|^6){\rm d}x+o(1). \end{eqnarray}
(3.9)

事实上, 由(3.5) 式可得

\begin{equation} \int_{{{\Bbb R}} ^3}\varepsilon|u_n|^6\varphi_{n}{\rm d}x = \int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}\varepsilon|u_n|^6{\rm d}x+o(1) = o(1), \end{equation}
(3.10)

\begin{equation} \int_{{{\Bbb R}} ^3}|u_n|^p\varphi_{n}{\rm d}x = \int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}|u_n|^p{\rm d}x+o(1) = o(1), \end{equation}
(3.11)

\begin{equation} \int_{{{\Bbb R}} ^3}V(x)|u_n|^2\varphi_{n}{\rm d}x = \int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}V(x)|u_n|^2{\rm d}x+o(1) = o(1). \end{equation}
(3.12)

因此, 由(3.8) 式和(3.10)–(3.12) 式可得

\begin{equation} \int_{{{\Bbb R}} ^3}\nabla u_n\cdot\nabla(\varphi_{n}u_n){\rm d}x = o(1). \end{equation}
(3.13)

因为

\begin{eqnarray*} \int_{{{\Bbb R}} ^3}\nabla u_n\nabla(\varphi_{n}u_n){\rm d}x & = &\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}\nabla u_n\nabla(\varphi_{n}u_n){\rm d}x\\ & = &\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}|\nabla u_n|^2\varphi_{n}{\rm d}x+\int_{B_{4r_n}(x_n)\backslash B_{r_n}(x_n)}u_n\nabla u_n\nabla\varphi_{n}{\rm d}x\\ & = &\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}|\nabla u_n|^2{\rm d}x+\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}|\nabla u_n|^2\varphi_{n}{\rm d}x\\ &&+\int_{B_{2r_n}(x_n)\backslash B_{r_n}(x_n)}|\nabla u_n|^2\varphi_{n}{\rm d}x+\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}u_n\nabla u_n\nabla\varphi_{n}{\rm d}x\\ &&+\int_{B_{2r_n}(x_n)\backslash B_{r_n}(x_n)}u_n\nabla u_n\nabla\varphi_{n}{\rm d}x, \end{eqnarray*}

由(3.6), (3.7) 和(3.13) 式可得

\int_{B_{4r_n}(x_n)\backslash B_{3r_n}(x_n)}|\nabla u_n|^2\varphi_{n}{\rm d}x = o(1), \, \, \, \, \, \, \, \, \, \, \int_{B_{2r_n}(x_n)\backslash B_{r_n}(x_n)}|\nabla u_n|^2\varphi_{n}{\rm d}x = o(1).

从而证明了(3.9) 式.

考虑另一截断函数 \eta , 满足 0\leq\eta\leq1 , 当 s\leq2 \eta(s) = 1 , 当 s\geq3 \eta(s) = 0 |\eta'(s)|\leq2 . U_n(x) = \eta\big(\frac{|x-x_n|}{r_n}\big)u_n(x), W_n(x) = \Big(1-\eta\big(\frac{|x-x_n|}{r_n}\big)\Big)u_n(x), 然后由(3.4) 式可得

\int_{{{\Bbb R}} ^3}(V(x)|U_n|^2+|U_n|^p+\varepsilon|U_n|^6){\rm d}x\geq\alpha-\varepsilon_{n},

\int_{{{\Bbb R}} ^3}(V(x)|W_n|^2+|W_n|^p+\varepsilon|W_n|^6){\rm d}x\geq(l-\alpha)-\varepsilon_{n}.

从(3.9) 式和 \eta 的定义可得

\begin{eqnarray*} \int_{{{\Bbb R}} ^3}\nabla U_n\nabla W_n{\rm d}x& = &\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}\nabla(\eta u_n)\nabla[(1-\eta)u_n]{\rm d}x\\ & = &\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}(\nabla\eta\cdot u_n+\eta\cdot\nabla u_n)[\nabla(1-\eta)\cdot u_n+(1-\eta)\cdot\nabla u_n]{\rm d}x\\ & = &\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}\Big(\eta(1-\eta)|\nabla u_n|^2-|\nabla\eta|^2|u_n|^2 +(1-2\eta)u_n\nabla u_n\nabla\eta\Big){\rm d}x\\ & = &o(1), \end{eqnarray*}

这意味着

\begin{equation} \int_{{{\Bbb R}} ^3}|\nabla u_n|^2{\rm d}x = \int_{{{\Bbb R}} ^3}|\nabla U_n|^2{\rm d}x+\int_{{{\Bbb R}} ^3}|\nabla W_n|^2{\rm d}x+o(1). \end{equation}
(3.14)

类似地, 由(3.12) 式可得

\begin{equation} \int_{{{\Bbb R}} ^3}V(x)|u_n|^2{\rm d}x = \int_{{{\Bbb R}} ^3}V(x)|U_n|^2{\rm d}x+\int_{{{\Bbb R}} ^3}V(x)|W_n|^2{\rm d}x+o(1). \end{equation}
(3.15)

现在区分以下两种情况.

情形1   若 \{x_n\} 有界, 由 (V_0) 得, 对任意的 \varepsilon>0 , 存在 R_0>0 使得

\begin{equation} |V(x)-V_{\infty}|\leq \varepsilon, \, \, \, \, \forall|x|\geq R_0. \end{equation}
(3.16)

\{x_n\}\subset{{\Bbb R}} ^3 的有界性可得, 存在 R'>0 使得 |x_n|\leq R' . 因此, 当 n 充分大时, 有 {{\Bbb R}} ^3\backslash B_{r_n}(x_n)\subset{{\Bbb R}} ^3\backslash B_{r_n-R'}(0)\subset {{\Bbb R}} ^3\backslash B_{R_0}(0) . 由(3.16) 式和假设(1.5) 可推导出

\begin{eqnarray*} \bigg|\int_{{{\Bbb R}} ^3}\big(V(x)-V_{\infty}\big)|W_n|^2{\rm d}x\bigg| & = &\int_{|x-x_n|>2r_n}|V(x)-V_{\infty}||W_n|^2{\rm d}x\\ &\leq&\varepsilon\int_{|x-x_n|>2r_n}|W_n|^2{\rm d}x\leq\varepsilon C, \end{eqnarray*}

且由 \varepsilon 的任意性可导出

\begin{equation} \int_{{{\Bbb R}} ^3}\big(V( x)-V_{\infty}\big)|W_n|^2{\rm d}x = o(1). \end{equation}
(3.17)

I_A(W_n) = \frac{1}{2}\|W_n\|^2+\frac{b}{2}A\|W_n\|_{{\cal D}}^2-\frac{1}{p}|W_n|_p^p-\frac{\varepsilon}{6}|W_n|_6^6,

此时可断言

\begin{equation} \langle I'_A(W_n), W_n\rangle = \langle I'_{\varepsilon}(u_n), W_n\rangle+o(1) = o(1). \end{equation}
(3.18)

事实上, 由(3.9) 式可得, 当 n 充分大时有

\begin{eqnarray} &&\int_{{{\Bbb R}} ^3}\Big(|\nabla W_n|^2-\nabla u_n\nabla W_n\Big){\rm d}x{}\\ & = &\int_{{{\Bbb R}} ^3}\Big(\big|\nabla[(1-\eta)u_n]\big|^2-\nabla u_n\nabla[(1-\eta)u_n]\Big){\rm d}x{}\\ & = &\int_{{{\Bbb R}} ^3}\Big(|\nabla\eta|^2|u_n|^2-(1-2\eta)u_n\cdot\nabla u_n\cdot\nabla\eta+\eta(\eta-1)|\nabla u_n|^2\Big){\rm d}x{}\\ &\leq&\int_{{{\Bbb R}} ^3}\Big||\nabla\eta|^2|u_n|^2+(2\eta-1)u_n\cdot\nabla u_n\cdot\nabla\eta-\eta(1-\eta)|\nabla u_n|^2\Big|{\rm d}x{}\\ &\leq&\frac{C}{{r_n}^2}+\frac{C}{r_n}+o(1) = o(1). \end{eqnarray}
(3.19)

从(3.9) 式得, 当 n 充分大时, 有

\begin{eqnarray} \bigg|\int_{{{\Bbb R}} ^3}\Big(|W_n|^6-|u_n|^4u_nW_n\Big){\rm d}x\bigg| & = &\bigg|\int_{{{\Bbb R}} ^3}\big((1-\eta)^6|u_n|^6-|u_n|^4u_n(1-\eta)u_n\big){\rm d}x\bigg|{}\\ &\leq&\int_{{{\Bbb R}} ^3}(1-\eta)\big|(1-\eta)^{5}-1\big||u_n|^6{\rm d}x{}\\ & = &\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}(1-\eta)\big|(1-\eta)^{5}-1\big||u_n|^6{\rm d}x{}\\ & = &o(1). \end{eqnarray}
(3.20)

类似地, 有

\begin{equation} \bigg|\int_{{{\Bbb R}} ^3}\Big(|W_n|^p-|u_n|^{p-2}u_nW_n\Big){\rm d}x\bigg| = o(1), \end{equation}
(3.21)

且根据(3.12) 和(3.17) 式, 可得

\begin{eqnarray} &&\bigg|\int_{{{\Bbb R}} ^3}\Big(V_{\infty}|W_n|^2-V(x)u_nW_n\Big){\rm d}x\bigg|{}\\ &\leq&\int_{{{\Bbb R}} ^3}\Big(|V(x)-V_{\infty}||W_n|^2+V(x)(1-\eta)\eta|u_n|^2\Big){\rm d}x{}\\ & = &\int_{{{\Bbb R}} ^3}|V(x)-V_{\infty}||W_n|^2{\rm d}x+\int_{B_{3r_n}(x_n)\backslash B_{2r_n}(x_n)}V(x)(1-\eta)\eta|u_n|^2{\rm d}x{}\\ & = &o(1). \end{eqnarray}
(3.22)

因此, 由(3.19)–(3.22) 式可推出(3.18) 式. 因为 \|W_n\|_{{\cal D}}^2<\|u_n\|_{{\cal D}}^2 , 存在 t_n<1 使得 t_nW_n\in{\cal N}_{\varepsilon, \infty}

\begin{eqnarray*} m_{\varepsilon}&\leq& I_{\varepsilon, \infty}(t_nW_n) = I_{\varepsilon, \infty}(t_nW_n)-\frac{1}{p}\langle I'_{\varepsilon, \infty}(t_nW_n), t_nW_n\rangle\\ & = &(\frac{1}{2}-\frac{1}{p})\|t_nW_n\|^2+(\frac{1}{4}-\frac{1}{p})b\|t_nW_n\|_{{\cal D}}^4+(\frac{1}{p}-\frac{1}{6})\varepsilon|t_nW_n|_6^6\\ &<&(\frac{1}{2}-\frac{1}{p})\|W_n\|^2+(\frac{1}{4}-\frac{1}{p})b\|W_n\|_{{\cal D}}^4+(\frac{1}{p}-\frac{1}{6})\varepsilon|W_n|_6^6\\ &<&(\frac{1}{2}-\frac{1}{p})\|u_n\|^2+(\frac{1}{4}-\frac{1}{p})b\|u_n\|_{{\cal D}}^4+(\frac{1}{p}-\frac{1}{6})\varepsilon|u_n|_6^6\\ & = &I_{\varepsilon}(u_n)-\frac{1}{p}\langle I'_{\varepsilon, \infty}(u_n), u_n\rangle\\ & = &c+o(1)<m_{\varepsilon}, \end{eqnarray*}

这就产生了矛盾.

情形2   若 \{x_n\} 无界, 选取子列, 仍记为 \{x_n\} , 使得 |x_n|\geq 2r_n . 那么有 B_{2r_n}(x_n)\subset {{\Bbb R}} ^3\backslash B_{r_n}(0)\subset{{\Bbb R}} ^3\backslash B_{R_0}(0) . 类似于(3.17) 式的证明, 可推出

\int_{{{\Bbb R}} ^3}\big(V(x)-V_{\infty}\big)|U_n|^2{\rm d}x = o(1).

类似于 \{x_n\} 有界的情形, 可得出矛盾 m_{\varepsilon}<m_{\varepsilon} . 因此, 二分性不会发生.

据以上讨论, 序列 \{\rho_n\} 是紧的, 即存在 \{x_n\}\subset{{\Bbb R}} ^3 , \widetilde{R}>0 使得对任意的 \hat{\delta}>0

\begin{equation} \int_{B_{\widetilde{R}}^{c}(x_n)}\rho_n(x){\rm d}x<\hat{\delta}. \end{equation}
(3.23)

断言序列 \{x_n\} 一定有界. 否则, 选取 r_n 使得当 r_n\rightarrow +\infty 时, 有 |x_n|\geq r_n\geq \widetilde{R}+R_0 . n 充分大时, 有 B_{\widetilde{R}}(x_n)\subset {{\Bbb R}} ^3\backslash B_{r_n-\widetilde{R}}(0)\subset{{\Bbb R}} ^3\backslash B_{R_0}(0) . 由(3.16) 和(3.23) 式得

\begin{eqnarray*} \bigg|\int_{{{\Bbb R}} ^3}\big(V(x)-V_{\infty}\big)|u_n|^2{\rm d}x\bigg| &\leq&\int_{B_{\widetilde{R}}(x_n)}|V(x)-V_{\infty}||u_n|^2{\rm d}x+\int_{B_{\widetilde{R}}^{c}(x_n)}|V(x)-V_{\infty}||u_n|^2{\rm d}x \\ & \leq&\varepsilon C+o(1). \end{eqnarray*}

因此, I_{\varepsilon}(u_n) = I_{\varepsilon, \infty}(u_n)+o(1) o(1) = \langle I'_{\varepsilon}(u_n), u_n\rangle = \langle I'_{\varepsilon, \infty}(u_n), u_n\rangle +o(1) . 于是存在 t_n\rightarrow1 使得 t_nu_n\in{\cal N}_{\varepsilon, \infty} . 因此, 当 n 充分大时, 有

c = I_{\varepsilon}(u_n)+o(1) = I_{\varepsilon, \infty}(u_n)+o(1) = I_{\varepsilon, \infty}(t_nu_n)+o(1)\geq m_{\varepsilon}+o(1),

这与条件 c<m_{\varepsilon} 相矛盾. 因此断言得证.

因为 \{u_n\}_{n} H^1({{\Bbb R}} ^3) 中有界, 通过取子列, 仍记为 \{u_n\}_n , 可假设存在 \bar{u}\in H^1({{\Bbb R}} ^3) 使得

\begin{equation} u_n\rightharpoonup \bar{u}\, \, {在}\, \, H^1({{\Bbb R}} ^3), \quad u_n\rightarrow \bar{u}\, \, {在}\, \, L_{\rm loc}^r({{\Bbb R}} ^3)\, (2\leq r<6), \quad u_n\rightarrow \bar{u}\, \, {\rm a.e.}\ \, x\in{{\Bbb R}} ^3. \end{equation}
(3.24)

因此, 从(3.23) 式可推导出当 n\rightarrow \infty

\begin{equation} \int_{{{\Bbb R}} ^3}V(x)|u_n|^2{\rm d}x\rightarrow \int_{{{\Bbb R}} ^3}V(x)|\bar{u}|^2{\rm d}x, \, \, \, \, \, \, \int_{{{\Bbb R}} ^3}|u_n|^p{\rm d}x\rightarrow \int_{{{\Bbb R}} ^3}|\bar{u}|^p{\rm d}x. \end{equation}
(3.25)

v_n: = u_n-\bar{u} , 欲证当 n\rightarrow \infty 时, 有 \|v_n\|_{{\cal D}}\rightarrow0 . 通过取子列, 仍记为 v_n , 假设 \lim\limits_{n\rightarrow \infty}\|v_{n}\|_{{\cal D}} = \alpha_{1}\geq0 . I'_{\varepsilon}(u_n)\rightarrow0 , (3.24) 式和Brezis-Lieb引理, 可推导出

\|u_n\|_V^2+b\|u_n\|_{{\cal D}}^4-|u_n|^p_p-\varepsilon|u_n|^6_6 = o(1),

\|u_n\|_{{\cal D}}^{2} = \|\bar{u}\|_{{\cal D}}^{2}+\|v_n\|_{{\cal D}}^{2}+o(1),

\|u_n\|_{{\cal D}}^{4} = \|\bar{u}\|_{{\cal D}}^{4}+\|v_n\|_{{\cal D}}^{4}+2\|\bar{u}\|_{{\cal D}}^{2}\|v_n\|_{{\cal D}}^{2}+o(1),

|u_n|^6_6 = |v_n|^6_6+|\bar{u}|^6_6+o(1).

从而有

\begin{equation} \|v_n\|_V^2+\|\bar{u}\|_V^2+b\|v_n\|_{{\cal D}}^4+b\|\bar{u}\|_{{\cal D}}^4+2b\alpha_1^2\|\bar{u}\|_{{\cal D}}^2 -\varepsilon|\bar{u}|^6_6-\varepsilon|v_n|^6_6-|\bar{u}|^p_p = o(1). \end{equation}
(3.26)

此外, 有

\begin{equation} \lim\limits_{n\rightarrow \infty}\langle I'_{\varepsilon}(u_n), \bar{u}\rangle = \|\bar{u}\|_V^2+b\alpha_1^2\|\bar{u}\|_{{\cal D}}^2+b\|\bar{u}\|_{{\cal D}}^4-\varepsilon|\bar{u}|^6_6-|\bar{u}|^p_p = 0. \end{equation}
(3.27)

由(3.26) 和(3.27) 式可得

\begin{equation} \|v_n\|_V^2+b\|v_n\|_{{\cal D}}^4+b\alpha_1^2\|\bar{u}\|_{{\cal D}}^2-\varepsilon|v_n|^6_6 = o(1). \end{equation}
(3.28)

若当 n\rightarrow \infty 时有 |v_n|_6\rightarrow0 , 通过(3.28) 式可知 v_n\rightarrow0 H^1({{\Bbb R}} ^3) , 从而有 \alpha_1 = 0 .

\lim\limits_{n\rightarrow \infty}|v_n|_6\neq0 , 假设 \alpha_{2} = \lim\limits_{n\rightarrow \infty}|v_n|^6_6>0 .

由(3.28) 式和 {\cal S}\alpha_2^{\frac{1}{3}}\leq \alpha_1^2 , 可推导出 a\alpha_1^2+b\alpha_1^4\leq\varepsilon \alpha_2 , 从而引出下式

\varepsilon \alpha_{2}\geq a\alpha_{1}^2+b\alpha_{1}^4\geq a{\cal S}\alpha_{2}^{\frac{1}{3}}+b{\cal S}^{2}\alpha_{2}^{\frac{2}{3}},

这意味着

\varepsilon \alpha_{2}^{\frac{2}{3}}-b{\cal S}^{2}\alpha_{2}^{\frac{1}{3}}-a{\cal S}\geq0,

\begin{equation} \alpha_{2}^{\frac{1}{3}}\geq\frac{b{\cal S}^{2}+\sqrt{b^{2}{\cal S}^{4}+4\varepsilon a{\cal S}}}{2\varepsilon}. \end{equation}
(3.29)

由(3.27) 式, 有

\begin{eqnarray*} c+o(1)& = &I_{\varepsilon}(u_n)-\frac{1}{6}\langle I'_{\varepsilon}(u_n), u_n\rangle = \frac{1}{3}\|u_n\|_V^2+\frac{b}{12}\|u_n\|^4_{{\cal D}}+\frac{p-6}{6p}|u_n|^p_p\\ & = &\frac{1}{3}(\|\bar{u}\|_V^2+\|v_n\|_V^2)+\frac{b}{12}(\|v_n\|_{{\cal D}}^4+\|\bar{u}\|_{{\cal D}}^4+2\alpha_1^2\|\bar{u}\|_{{\cal D}}^2)+\frac{p-6}{6p}|\bar{u}|^p_p+o(1)\\ &\geq&\frac{a}{3}\|v_n\|_{{\cal D}}^2+\frac{b}{12}\|v_n\|_{{\cal D}}^4+\frac{1}{3}\|\bar{u}\|_V^2+\frac{b}{12}\|\bar{u}\|_{{\cal D}}^4+\frac{b}{6}\alpha_1^2\|\bar{u}\|_{{\cal D}}^2+\frac{p-6}{6p}|\bar{u}|^p_p+o(1)\\ &\geq&\frac{a}{3}\|v_n\|_{{\cal D}}^2+\frac{b}{12}\|v_n\|_{{\cal D}}^4+\frac{p-4}{4p}|\bar{u}|^p_p+o(1)\\ &\geq&\frac{a}{3}\alpha_1^2+\frac{b}{12}\alpha_1^4, \end{eqnarray*}

结合(3.29) 式, 有

\begin{eqnarray*} c&\geq&\frac{a}{3}{\cal S}\alpha_{2}^{\frac{1}{3}}+\frac{b}{12}{\cal S}^2\alpha_{2}^ {\frac{2}{3}}\geq\frac{a}{3}{\cal S}\frac{b{\cal S}^{2}+\sqrt{b^{2}{\cal S}^4+4\varepsilon a{\cal S}} }{2\varepsilon}+\frac{b}{12}{\cal S}^2\bigg(\frac{b{\cal S}^2+\sqrt{b^2{\cal S}^4+4\varepsilon a{\cal S}}}{2\varepsilon}\bigg)^2\\ & = &\frac{a}{3}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)+\frac{b}{12}\bigg(\frac{b}{2\varepsilon}{\cal S}^3+\sqrt{\frac{b^2}{4\varepsilon^{2}}{\cal S}^6+\frac{a}{\varepsilon}{\cal S}^3}\bigg)^2\\ & = &{\cal S}_{a, b}>m_{\varepsilon}, \end{eqnarray*}

这与 c<m_{\varepsilon} 相矛盾. 因此可得当 n\rightarrow \infty 时, 有 u_n\rightarrow \bar{u} H^1({{\Bbb R}} ^3) . 证毕.

定理1.1的证明   假设 V(x)\not\equiv1 . 现在, 断言

\begin{equation} \inf\limits_{{\cal N}_{\varepsilon}}I_{\varepsilon}<m_{\varepsilon}. \end{equation}
(3.30)

事实上, 定理2.1中的方程(2.1) 的基态解 w_{\varepsilon} , 令 t>0 使得 tw_{\varepsilon}\in{\cal N}_{\varepsilon} , 则有

\inf\limits_{{\cal N}_{\varepsilon}}I_{\varepsilon}\leq I_{\varepsilon}(tw_{\varepsilon})<I_{\varepsilon, \infty}(tw_{\varepsilon})\leq I_{\varepsilon, \infty}(w_{\varepsilon}) = m_{\varepsilon}.

采用定理2.1的证明方法(产生出 PS 序列), 利用命题3.1, 可得泛函 I_{\varepsilon} {\cal N}_{\varepsilon} 上存在极小元 u\in H^1({{\Bbb R}} ^3) . 类似于定理2.1的讨论, 可证得 u 是正的. 证毕.

定理1.2的证明  设 z\in{{\Bbb R}} ^3 使得(1.7) 式成立, 且 t_{\varepsilon}>0 使得 t_{\varepsilon}w_z\in{\cal N}_{\varepsilon} . 为证明问题(1.1) 存在基态解, 只需证明断言: 对于充分小 \varepsilon>0 , 成立

\begin{equation} I_{\varepsilon}(t_{\varepsilon}w_z)<m_{\varepsilon}. \end{equation}
(3.31)

事实上, 若(3.31) 式成立, 则 \inf\limits_{{\cal N}_{\varepsilon}}I_{\varepsilon}<m_{\varepsilon} . 类似于定理1.1的证明, 可证得问题(1.1) 存在基态解.

为证明(3.31) 式, 令 w_z\in{\cal N} , 即 \|w_z\|_V^2+b|\nabla w_z|_2^4 = |w_z|_p^p . 断言由(1.7) 式可得

\begin{equation} I(w_{z})<m. \end{equation}
(3.32)

现在, 由于

\begin{equation} I(w_z) = \frac{1}{2}\|w_z\|_V^2+\frac{b}{4}|\nabla w_z|_2^4-\frac{1}{p}|w_z|_p^p = \frac{1}{4}\|w_z\|_V^2+\frac{p-4}{4p}|w_z|_p^p. \end{equation}
(3.33)

注意到, 由(1.7) 式和 w 是方程(1.6) 的基态解可得

\begin{equation} I_{\infty}(w) = \frac{1}{4}\|w\|^2+\frac{p-4}{4p}|w|_p^p = m. \end{equation}
(3.34)

由(1.7), (3.33)和(3.34)式, 可推得(3.32) 成立.

最后, 断言当 \varepsilon\rightarrow0 时, 有 t_{\varepsilon}\rightarrow 1 . 事实上, 由 t_{\varepsilon}w_z\in{\cal N}_{\varepsilon} , 即

\begin{equation} \|w_z\|_V^2+bt_{\varepsilon}^2|\nabla w_z|_2^4 = t_{\varepsilon}^{p-2}|w_z|_p^p+\varepsilon t_{\varepsilon}^{4}|w_z|_6^6, \end{equation}
(3.35)

由上式易推得 \{t_{\varepsilon}\} 有界. 由 w_z\in{\cal N} 和(3.35) 式, 有

(|w_z|_p^p-b|\nabla w_z|_2^4)+bt_{\varepsilon}^2|\nabla w_z|_2^4 = t_{\varepsilon}^{p-2}|w_z|_p^p+o(1),

(t_{\varepsilon}^{2}-1)b|\nabla w_z|_2^4 = (t_{\varepsilon}^{p-2}-1)|w_z|_p^p+o(1),

上式蕴含了 t_{\varepsilon}\rightarrow1 .

由引理2.2可得: 当 \varepsilon\rightarrow0 时, 有 m_{\varepsilon}\rightarrow m . 因此, 对于充分小的 \varepsilon , 由(3.32) 式可推出(3.31) 式成立. 证毕.

参考文献

Kirchhoff G . Vorlesungen über Mechanik. Teubner: Leipzig, 1883

[本文引用: 1]

Xu L P , Chen H B .

Gound state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth

Adv Nonlinear Anal, 2018, 7, 535- 546

DOI:10.1515/anona-2016-0073      [本文引用: 1]

Liu Z S , Guo S J .

On ground states for the Kirchhoff-type problem with a general critical nonlinearity

J Math Anal Appl, 2015, 426, 267- 287

DOI:10.1016/j.jmaa.2015.01.044      [本文引用: 1]

Li H Y .

Existence of positive ground state solutions for a critical Kirchhoff type problem with sign-changing potential

Comput Math Appl, 2018, 75, 2858- 2873

DOI:10.1016/j.camwa.2018.01.015      [本文引用: 1]

Chen B T , Tang X H .

Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems

Complex Var Elliptic Equ, 2017, 62, 1093- 1116

DOI:10.1080/17476933.2016.1270272      [本文引用: 1]

Qin D D , He Y B , Tang X H .

Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity

Comput Math Appl, 2016, 71, 1524- 1536

DOI:10.1016/j.camwa.2016.02.037     

Qin D D , He Y B , Tang X H .

Ground state and multiple solutions for Kirchhoff type equations with critical exponent

Canad Math Bull Vol, 2018, 61 (2): 353- 369

DOI:10.4153/CMB-2017-041-x      [本文引用: 1]

Li G B , Ye H Y .

Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^3

J Differential Equations, 2014, 257, 566- 600

DOI:10.1016/j.jde.2014.04.011      [本文引用: 1]

Wu K .

Existence of ground states for a Kirchhoff type problem without 4-superlinear condition

Comput Math Appl, 2018, 75, 755- 763

DOI:10.1016/j.camwa.2017.10.005      [本文引用: 1]

Guo Z J .

Ground states for Kirchhoff equations without compact condition

J Differential Equations, 2015, 259, 2884- 2902

DOI:10.1016/j.jde.2015.04.005      [本文引用: 1]

Zhang H , Zhang F B .

Ground states for the nonlinear Kirchhoff type problems

J Math Anal Appl, 2015, 423, 1671- 1692

DOI:10.1016/j.jmaa.2014.10.062      [本文引用: 1]

Liu Z S , Guo S J .

Existence of positive ground state solutions for Kirchhoff type problems

Nonlinear Anal, 2015, 120, 1- 13

DOI:10.1016/j.na.2014.12.008      [本文引用: 1]

Tang X H , Chen S T .

Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials

Calc Var Partial Differential Equations, 2017, 56, 110- 134

DOI:10.1007/s00526-017-1214-9      [本文引用: 2]

Chen S T , Tang X H .

Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials

J Math Phys, 2019, 60, 121509

DOI:10.1063/1.5128177      [本文引用: 1]

Ye Y W .

Ground state solutions for Kirchhoff-type problems with critical nonlinearity

Taiwanese J Math, 2020, 24, 63- 79

URL     [本文引用: 1]

Sun J T , Wu T F .

Ground state solutions for an indefine Kirchhoff type problem with steep potential well

J Differential Equations, 2014, 256, 1771- 1792

DOI:10.1016/j.jde.2013.12.006      [本文引用: 1]

Chen B T , Li G F , Tang X H .

Nehari-type ground state solutions for Kirchhoff type problems in \mathbb{R}^N

Appl Anal, 2019, 98, 1255- 1266

DOI:10.1080/00036811.2017.1419202      [本文引用: 1]

Hu T X , Lu L .

On some nonlocal equations with competing coefficients

J Math Anal Appl, 2018, 460, 863- 884

DOI:10.1016/j.jmaa.2017.12.027      [本文引用: 1]

He X M , Zou W M .

Ground states for nonlinear Kirchhoff equations with critical growth

Annali di Mate, 2014, 193, 473- 500

DOI:10.1007/s10231-012-0286-6     

Liu Z S , Guo S J .

Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent

Z Angew Math Phys, 2015, 66, 747- 769

DOI:10.1007/s00033-014-0431-8     

Liu Z S , Luo C L .

Existence of positive ground state solutions for Kirchhoff type equation with general critical growth

Top Methods Nonlinear Anal, 2016, 49, 165- 182

Liu J , Liao J F , Pan H L .

Ground state solution on a non-autonomous Kirchhoff type equation

Comput Math Appl, 2019, 78, 878- 888

DOI:10.1016/j.camwa.2019.03.009     

Lin X Y , Wei J Y .

Existence and concentration of ground state solutions for a class of Kirchhoff-type problems

Nonlinear Anal, 2020, 195, 111715

DOI:10.1016/j.na.2019.111715     

Li G B , Ye H Y .

Existence of positive solutions for nonlinear Kirchhoff type problems in \mathbb{R}^3 with critical Sobolev exponent

Math Meth Appl Sci, 2014, 37, 2570- 2584

DOI:10.1002/mma.3000     

Sun D D , Zhang Z T .

Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials

Z Angew Math Phys, 2019, 70 (37): 1- 18

DOI:10.1007/s00033-019-1082-6     

Tang X H , Chen B T .

Ground state sign-changing solutions for Kirchhoff type problems in bounded domains

J Differential Equations, 2016, 261, 2384- 2402

DOI:10.1016/j.jde.2016.04.032      [本文引用: 1]

Hu T , Lu L .

Multiplicity of positive solutions for Kirchhoff type problems in \mathbb{R}^3

Topol Methods Nonlinear Anal, 2017, 50, 231- 252

URL     [本文引用: 1]

Willem M . Minimax Theorems. Boston: Birkhäuser, 1996

[本文引用: 1]

Lions P L .

The concentration-compactness principle in the calculus of variation. The locally compact case, Part Ⅱ

Ann Inst H Poincaré Anal Non Linéaire, 1984, 1, 223- 283

DOI:10.1016/S0294-1449(16)30422-X      [本文引用: 1]

/