1 |
Kirchhoff G . Vorlesungen über Mechanik. Teubner: Leipzig, 1883
|
2 |
Xu L P , Chen H B . Gound state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth. Adv Nonlinear Anal, 2018, 7, 535- 546
doi: 10.1515/anona-2016-0073
|
3 |
Liu Z S , Guo S J . On ground states for the Kirchhoff-type problem with a general critical nonlinearity. J Math Anal Appl, 2015, 426, 267- 287
doi: 10.1016/j.jmaa.2015.01.044
|
4 |
Li H Y . Existence of positive ground state solutions for a critical Kirchhoff type problem with sign-changing potential. Comput Math Appl, 2018, 75, 2858- 2873
doi: 10.1016/j.camwa.2018.01.015
|
5 |
Chen B T , Tang X H . Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems. Complex Var Elliptic Equ, 2017, 62, 1093- 1116
doi: 10.1080/17476933.2016.1270272
|
6 |
Qin D D , He Y B , Tang X H . Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity. Comput Math Appl, 2016, 71, 1524- 1536
doi: 10.1016/j.camwa.2016.02.037
|
7 |
Qin D D , He Y B , Tang X H . Ground state and multiple solutions for Kirchhoff type equations with critical exponent. Canad Math Bull Vol, 2018, 61 (2): 353- 369
doi: 10.4153/CMB-2017-041-x
|
8 |
Li G B , Ye H Y . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$. J Differential Equations, 2014, 257, 566- 600
doi: 10.1016/j.jde.2014.04.011
|
9 |
Wu K . Existence of ground states for a Kirchhoff type problem without 4-superlinear condition. Comput Math Appl, 2018, 75, 755- 763
doi: 10.1016/j.camwa.2017.10.005
|
10 |
Guo Z J . Ground states for Kirchhoff equations without compact condition. J Differential Equations, 2015, 259, 2884- 2902
doi: 10.1016/j.jde.2015.04.005
|
11 |
Zhang H , Zhang F B . Ground states for the nonlinear Kirchhoff type problems. J Math Anal Appl, 2015, 423, 1671- 1692
doi: 10.1016/j.jmaa.2014.10.062
|
12 |
Liu Z S , Guo S J . Existence of positive ground state solutions for Kirchhoff type problems. Nonlinear Anal, 2015, 120, 1- 13
doi: 10.1016/j.na.2014.12.008
|
13 |
Tang X H , Chen S T . Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differential Equations, 2017, 56, 110- 134
doi: 10.1007/s00526-017-1214-9
|
14 |
Chen S T , Tang X H . Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials. J Math Phys, 2019, 60, 121509
doi: 10.1063/1.5128177
|
15 |
Ye Y W . Ground state solutions for Kirchhoff-type problems with critical nonlinearity. Taiwanese J Math, 2020, 24, 63- 79
|
16 |
Sun J T , Wu T F . Ground state solutions for an indefine Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256, 1771- 1792
doi: 10.1016/j.jde.2013.12.006
|
17 |
Chen B T , Li G F , Tang X H . Nehari-type ground state solutions for Kirchhoff type problems in $\mathbb{R}^N$. Appl Anal, 2019, 98, 1255- 1266
doi: 10.1080/00036811.2017.1419202
|
18 |
Hu T X , Lu L . On some nonlocal equations with competing coefficients. J Math Anal Appl, 2018, 460, 863- 884
doi: 10.1016/j.jmaa.2017.12.027
|
19 |
He X M , Zou W M . Ground states for nonlinear Kirchhoff equations with critical growth. Annali di Mate, 2014, 193, 473- 500
doi: 10.1007/s10231-012-0286-6
|
20 |
Liu Z S , Guo S J . Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Z Angew Math Phys, 2015, 66, 747- 769
doi: 10.1007/s00033-014-0431-8
|
21 |
Liu Z S , Luo C L . Existence of positive ground state solutions for Kirchhoff type equation with general critical growth. Top Methods Nonlinear Anal, 2016, 49, 165- 182
|
22 |
Liu J , Liao J F , Pan H L . Ground state solution on a non-autonomous Kirchhoff type equation. Comput Math Appl, 2019, 78, 878- 888
doi: 10.1016/j.camwa.2019.03.009
|
23 |
Lin X Y , Wei J Y . Existence and concentration of ground state solutions for a class of Kirchhoff-type problems. Nonlinear Anal, 2020, 195, 111715
doi: 10.1016/j.na.2019.111715
|
24 |
Li G B , Ye H Y . Existence of positive solutions for nonlinear Kirchhoff type problems in $\mathbb{R}^3$ with critical Sobolev exponent. Math Meth Appl Sci, 2014, 37, 2570- 2584
doi: 10.1002/mma.3000
|
25 |
Sun D D , Zhang Z T . Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials. Z Angew Math Phys, 2019, 70 (37): 1- 18
doi: 10.1007/s00033-019-1082-6
|
26 |
Tang X H , Chen B T . Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J Differential Equations, 2016, 261, 2384- 2402
doi: 10.1016/j.jde.2016.04.032
|
27 |
Hu T , Lu L . Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb{R}^3$. Topol Methods Nonlinear Anal, 2017, 50, 231- 252
|
28 |
Willem M . Minimax Theorems. Boston: Birkhäuser, 1996
|
29 |
Lions P L . The concentration-compactness principle in the calculus of variation. The locally compact case, Part Ⅱ. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1, 223- 283
doi: 10.1016/S0294-1449(16)30422-X
|