数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 666-685.

• 论文 • 上一篇    下一篇

非线性临界Kirchhoff型问题的正基态解

成艺群(),滕凯民*()   

  1. 太原理工大学数学学院 太原 030024
  • 收稿日期:2020-04-17 出版日期:2021-06-01 发布日期:2021-06-09
  • 通讯作者: 滕凯民 E-mail:1906157258@qq.com;tengkaimin2013@163.com
  • 作者简介:成艺群, E-mail: 1906157258@qq.com
  • 基金资助:
    国家自然科学基金(11501403);山西省留学回国择优项目(2018);山西省自然科学基金面上项目(201901D111085)

Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem

Yiqun Cheng(),Kaimin Teng*()   

  1. School of Mathematical Sciences, Taiyuan University of Technology, Taiyuan 030024
  • Received:2020-04-17 Online:2021-06-01 Published:2021-06-09
  • Contact: Kaimin Teng E-mail:1906157258@qq.com;tengkaimin2013@163.com
  • Supported by:
    the NSFC(11501403);the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(2018);the NSF of Shanxi Province(201901D111085)

摘要:

该文研究如下Kirchhoff型方程 其中a>0b>04<p<6V(x)L32loc(R3)是一个给定的非负函数且满足lim|x|V(x):=V.对V(x)给定适当的假设条件,当ε充分小时,证明了基态解的存在性.

关键词: Kirchhoff型方程, 临界非线性, 基态解

Abstract:

In this paper, we consider the following Kirchhoff type problem {(a+bR3|u|2dx)u+V(x)u=|u|p2u+ε|u|4u,xR3,uH1(R3), where a>0, b>0, 4<p<6 and V(x)L32loc(R3) is a given nonnegative function such that lim|x|V(x):=V. Under suitable conditions on V(x), we prove that the existence of ground state solutions for small ε.

Key words: Kirchhoff type problem, Critical nonlinearity, Ground state

中图分类号: 

  • O175.2