数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 666-685.

• 论文 • 上一篇    下一篇

非线性临界Kirchhoff型问题的正基态解

成艺群(),滕凯民*()   

  1. 太原理工大学数学学院 太原 030024
  • 收稿日期:2020-04-17 出版日期:2021-06-01 发布日期:2021-06-09
  • 通讯作者: 滕凯民 E-mail:1906157258@qq.com;tengkaimin2013@163.com
  • 作者简介:成艺群, E-mail: 1906157258@qq.com
  • 基金资助:
    国家自然科学基金(11501403);山西省留学回国择优项目(2018);山西省自然科学基金面上项目(201901D111085)

Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem

Yiqun Cheng(),Kaimin Teng*()   

  1. School of Mathematical Sciences, Taiyuan University of Technology, Taiyuan 030024
  • Received:2020-04-17 Online:2021-06-01 Published:2021-06-09
  • Contact: Kaimin Teng E-mail:1906157258@qq.com;tengkaimin2013@163.com
  • Supported by:
    the NSFC(11501403);the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(2018);the NSF of Shanxi Province(201901D111085)

摘要:

该文研究如下Kirchhoff型方程 其中$a>0$,$b>0$,$4 < p < 6$,$V(x)\in L_{\rm loc}^{\frac{3}{2}}(\mathbb{R}^3)$是一个给定的非负函数且满足$\lim\limits_{|x|\rightarrow\infty}V(x): =V_{\infty}$.对$V(x)$给定适当的假设条件,当$\varepsilon$充分小时,证明了基态解的存在性.

关键词: Kirchhoff型方程, 临界非线性, 基态解

Abstract:

In this paper, we consider the following Kirchhoff type problem $ \begin{equation}\left\{ \begin{array}{l}-\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2{\rm d}x\Big)\triangle u+V(x)u=|u|^{p-2}u+\varepsilon|u|^4u, \, \, \, x\in\mathbb{R}^3, \\ u\in H^{1}(\mathbb{R}^3), \end{array} \right. \end{equation}$ where $a>0$, $b>0$, $4< p < 6$ and $V (x)\in L_{\rm loc}^{\frac{3}{2}}(\mathbb{R}^3)$ is a given nonnegative function such that $\lim\limits_{|x|\rightarrow\infty}V(x): =V_{\infty}$. Under suitable conditions on $V(x)$, we prove that the existence of ground state solutions for small $\varepsilon$.

Key words: Kirchhoff type problem, Critical nonlinearity, Ground state

中图分类号: 

  • O175.2