数学物理学报, 2021, 41(2): 468-478 doi:

论文

一类非线性双曲型方程扩展混合有限元方法的误差估计

王克彦1, 王奇生,2

Error Estimates for Expanded Mixed Finite Element Methods for Nonlinear Hyperbolic Equation

Wang Keyan1, Wang Qisheng,2

通讯作者: 王奇生, E-mail: 282228006@qq.com

收稿日期: 2020-02-21  

基金资助: 湖南省重点实验室项目基金.  2016TP1020
衡阳师范学院科学基金.  18D12

Received: 2020-02-21  

Fund supported: the Science and Technology Plan Project of Hunan Province.  2016TP1020
the Scientific Research Foundation of Hengyang Normal University.  18D12

Abstract

In this paper, expanded mixed finite element method is developed for a class of nonlinear hyperbolic equation. A priori error estimate for the space discrete scheme is discussed in L(L2) norm. Centered finite differences are used to advance in time, a fully discrete scheme is proposed. Further, a priori error estimate for the fully discrete scheme is established. Finally, a numerical example is presented to confirm the theoretical results.

Keywords: Nonlinear hyperbolic equation ; Expanded mixed finite element method ; Error estimate

PDF (688KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王克彦, 王奇生. 一类非线性双曲型方程扩展混合有限元方法的误差估计. 数学物理学报[J], 2021, 41(2): 468-478 doi:

Wang Keyan, Wang Qisheng. Error Estimates for Expanded Mixed Finite Element Methods for Nonlinear Hyperbolic Equation. Acta Mathematica Scientia[J], 2021, 41(2): 468-478 doi:

1 引言

许多物理现象的数学模型, 如结构振动、水波、声波、电磁波等的数学模型, 都可以描述为双曲型方程. 关于双曲型方程数值方法的研究, 已有许多的结果[1-5]. 本文考虑如下非线性双曲问题

$ \begin{eqnarray} & c(u)u_{tt}-\nabla\cdot(K\nabla u) = f, \quad (\mathit{\boldsymbol{x}}, t)\in\Omega\times J, \end{eqnarray} $

$ \begin{eqnarray} & u(\mathit{\boldsymbol{x}}, t) = 0, \quad (\mathit{\boldsymbol{x}}, t)\in\partial\Omega\times J, \end{eqnarray} $

$ \begin{eqnarray} &u(\mathit{\boldsymbol{x}}, 0) = u_0(\mathit{\boldsymbol{x}}), \ u_t(\mathit{\boldsymbol{x}}, 0) = u_1(\mathit{\boldsymbol{x}}), \quad \mathit{\boldsymbol{x}}\in\Omega, \end{eqnarray} $

其中$ \Omega\subset{{\Bbb R}} ^2 $为有界区域, $ \partial\Omega $为其光滑边界, $ J = (0, T] $, $ u_{tt} = \frac{\partial^2u}{\partial t^2} $, $ u_t = \frac{\partial u}{\partial t} $, $ K = K(\mathit{\boldsymbol{x}}) = (k_{ij}(\mathit{\boldsymbol{x}}))_{2\times 2} $是对称一致正定的$ 2\times2 $矩阵, $ c(u) $及其导数关于$ u $是Lipschitz连续, $ f $$ u_0 $$ u_1 $是充分光滑的已知函数. 该类问题在粘弹性材料中有着广泛的应用[1].

20世纪90年代, 陈掌星[6]提出了扩展混合有限元方法数值求解二阶椭圆型问题, 之后, 他进一步利用该方法分析了线性和拟线性椭圆型问题[7-8]. 与此同时, Arbogast等人[9]针对线性椭圆型问题, 提出了基于最低阶RTN元的扩展混合有限元方法. 与标准混合有限元方法相比, 扩展混合有限元方法能够同时高精度逼近未知函数、未知函数的梯度和通量. 由于该方法无需对扩散系数求逆, 因此更适应于求解扩散项较小与渗透项较低的微分方程. 在过去的几十年里, 该方法得到了广泛的应用和关注. Woodward-Dawson[10]利用扩展混合有限元方法分析了非线性抛物型问题, 导出了半离散和全离散解的$ L^2 $误差估计. Gatica-Heuer[11]分析了一类椭圆型方程的扩展混合有限元格式的$ L^2 $收敛性. 最近, 文献[12] 提出了一种新的扩展混合有限元方法数值求解抛物型积分微分方程. 文献[13] 使用最低阶RT元的扩展混合有限元方法研究了一类非线性和非局部抛物型问题. 受上述文献的启发, 本文研究问题(1.1)–(1.3) 扩展混合有限元半离散和全离散格式下的先验误差估计.

2 扩展混合有限元格式的建立及相关性质

在本文中, $ C $表示不依赖于离散参数的正常数. $ L^p(\Omega) $表示定义在$ \Omega $的Banach空间, 用$ ||\cdot||_p $表示其范数. 对任意非负正整数$ m $, $ W^{m, p}(\Omega) = \{\mu\in L^p(\Omega), \ D^\vartheta\mu\in L^p(\Omega), |\vartheta|\leq m\} $为传统的Sobolev空间, 其范数定义为$ ||\mu||_{m, p}^p = \sum\limits_{|\vartheta|\leq m}||D^\vartheta\mu||_{L^p(\Omega)}^p $. 特别是, 当$ p = 2 $, 我们记$ H^m(\Omega) = W^{m, 2}(\Omega) $, 其范数简记为$ ||\cdot||_m = ||\cdot||_{m, 2} $, $ ||\cdot|| = ||\cdot||_{0, 2} $.

定义空间$ W = L^2(\Omega) $, $ \mathit{\boldsymbol{V}} = H({\rm div};\Omega) = \{\mathit{\boldsymbol{v}}:\mathit{\boldsymbol{v}}\in(L^2(\Omega))^2, \ \nabla\cdot \mathit{\boldsymbol{v}}\in L^2(\Omega)\}, $其模定义为

$ \Omega $进行拟一致三角剖分, 其单元直径不大于$ h $ ($ 0<h<1 $), 设$ W_h\times\mathit{\boldsymbol{V}}_h $为单元上的混合元空间, 其中$ W_h\times\mathit{\boldsymbol{V}}_h\subset W\times\mathit{\boldsymbol{V}} $. 本文使用Raviart-Thomas (RT$ _k $) 混合元空间[14], 其指标$ k\geq0 $. 接下来的结论在$ RT_k $空间中成立, 即

$ \begin{eqnarray} \nabla\cdot \mathit{\boldsymbol{v}}_h\in W_h, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{eqnarray} $

为了理论分析的需要, 引入$ L^2 $投影$ Q_{h}: W\rightarrow W_h $$ Q_{h}^*: \mathit{\boldsymbol{V}}\rightarrow \mathit{\boldsymbol{V}}_h $, 满足

$ \begin{equation} (\phi, w_h) = (Q_{h}\phi, w_h), \quad w_h\in W_h, \end{equation} $

$ \begin{equation} (\varphi, \mathit{\boldsymbol{v}}_h) = (Q_{h}^*\varphi, \mathit{\boldsymbol{v}}_h), \quad \ \ \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

考虑标准混合有限元空间的Fortin投影$ \Pi_h:(H^1(\Omega))^2\rightarrow \mathit{\boldsymbol{V}}_h $, 对任意$ \psi \in H({\rm div}, \Omega) $, 有

$ \begin{equation} (\nabla\cdot\Pi_h \psi, w_h) = (\nabla\cdot \psi, w_h), \quad \forall w_h\in W_h. \end{equation} $

上述投影具有如下逼近性质[14]

$ \begin{equation} \|Q_{h}\phi\|_{0, q}\leq C\|\phi\|_{0, q}, \quad 2\leq q<\infty, \end{equation} $

$ \begin{equation} \|\phi-Q_{h}\phi\|_{0, q}\leq C\|\phi\|_{r, q}h^r, \quad 0\leq r\leq k+1, \end{equation} $

$ \begin{equation} \| \psi-\Pi_h \psi\|_{0, q}\leq C\| \psi\|_{r, q}h^r, \ 1/q< r\leq k+1, \end{equation} $

$ \begin{equation} \|\nabla\cdot( \psi-\Pi_h \psi)\|_{0, q}\leq C\|\nabla\cdot \psi\|_{r, q}h^r, \ 0\leq r\leq k+1, \end{equation} $

其中$ \phi\in W^{k+1, q}(\Omega) $, $ \psi\in (W^{k+1, q}(\Omega))^2 $.

此外, 令$ c_* $, $ c^* $, $ K_* $, $ K^* $$ K_1 $为正常数, 对函数$ c(u) $, $ K $$ f $给出以下假设

(I) $ c_*\leq c(u)\leq c^* $;

(II) $ \forall \mathit{\boldsymbol{y}}\in{{\Bbb R}} ^2 $, 对于$ \mathit{\boldsymbol{x}}\in \bar{\Omega} $, $ K_*|\mathit{\boldsymbol{y}}|^2\leq \mathit{\boldsymbol{y}}^TK(\mathit{\boldsymbol{x}})\mathit{\boldsymbol{y}}\leq K^*|\mathit{\boldsymbol{y}}|^2 $;

(III) $ |f|, \left|\frac{\partial f}{\partial t}\right|, \left|\frac{\partial c}{\partial u}\right|, \left|\frac{\partial^2 c}{\partial u^2}\right|\leq K_1 $.

$ \mathit{\boldsymbol{ \widetilde{p}} } = -\nabla u $, $ \mathit{\boldsymbol{p}} = K\mathit{\boldsymbol{ \widetilde{p}} } $, 则问题(1.1)–(1.3) 等价于

$ \begin{equation} \left\{ \begin{array}{ll} c(u)u_{tt}+\nabla\cdot \mathit{\boldsymbol{ \widetilde{p}} } = f, \ (\mathit{\boldsymbol{x}}, t)\in\Omega\times J, & {\rm (a)}\\ \mathit{\boldsymbol{ \widetilde{p}} }+\nabla u = 0, \ (\mathit{\boldsymbol{x}}, t)\in\Omega\times J, & {\rm(b)}\\ \mathit{\boldsymbol{ \widetilde{p}} }-K\mathit{\boldsymbol{ \widetilde{p}} } = 0, \ (\mathit{\boldsymbol{x}}, t)\in\Omega\times J, & {\rm (c)}\\ u(\mathit{\boldsymbol{x}}, t) = 0, \ (\mathit{\boldsymbol{x}}, t)\in\partial\Omega\times J, &{\rm (d)}\\ u(\mathit{\boldsymbol{x}}, 0) = u_0(\mathit{\boldsymbol{x}}), \ u_t(\mathit{\boldsymbol{x}}, 0) = u_1(\mathit{\boldsymbol{x}}), \ \mathit{\boldsymbol{x}}\in\Omega. {\qquad}& \end{array} \right. \end{equation} $

问题(2.9) 的扩展混合变分问题为: 求$ (u, \mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{p}}):[0, T]\rightarrow W\times\mathit{\boldsymbol{V}} \times\mathit{\boldsymbol{V}} $, 满足

$ \begin{eqnarray} \left\{ \begin{array}{lr} (c(u)u_{tt}, w)+(\nabla\cdot \mathit{\boldsymbol{ \widetilde{p}} }, w) = (f, w), \ \forall w\in W, {\qquad} &{\rm (a)}\\ (\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}})-(\nabla\cdot\mathit{\boldsymbol{v}}, u) = 0, \ \forall \mathit{\boldsymbol{v}}\in \mathit{\boldsymbol{V}}, &{\rm (b)}\\ (\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}})-(K\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}}) = 0, \ \forall \mathit{\boldsymbol{v}}\in \mathit{\boldsymbol{V}}, &{\rm (c)}\\ u(\mathit{\boldsymbol{x}}, 0) = u_0(\mathit{\boldsymbol{x}}), \ u_t(\mathit{\boldsymbol{x}}, 0) = u_1(\mathit{\boldsymbol{x}}), \ \mathit{\boldsymbol{x}}\in\Omega. \end{array} \right. \end{eqnarray} $

定理 2.1  问题(2.9) 与(2.10) 是等价的.

  容易得到问题(2.9) 的解是弱形式(2.10) 的解. 因此, 我们只需证明弱形式(2.10) 的解是问题(2.9) 的解. 取$ w = c(u)u_{tt}+\nabla\cdot \mathit{\boldsymbol{p}}-f $, 代入(2.10a) 式得

从而有$ c(u)u_{tt}+\nabla\cdot \mathit{\boldsymbol{p}} = f $, 即(2.9a) 式成立. 由于$ H_0^1(\Omega)\subset \mathit{\boldsymbol{V}} $, 利用Green公式可得

$ \begin{equation} \left\{\begin{array}{ll} (\widetilde{\mathit{\boldsymbol{ \widetilde{p}} }}, \mathit{\boldsymbol{v}})+(\nabla u, \mathit{\boldsymbol{v}}) = 0, \quad \forall \mathit{\boldsymbol{v}}\in \mathit{\boldsymbol{V}}, \\ u(\mathit{\boldsymbol{x}}, t) = 0, \quad (\mathit{\boldsymbol{x}}, t)\in\partial\Omega\times J. \end{array}\right. \end{equation} $

$ \mathit{\boldsymbol{v}} = \mathit{\boldsymbol{ \widetilde{p}} }+\nabla u $, 代入(2.10b) 式得

$ \begin{eqnarray} \left\{\begin{array}{ll} \widetilde{\mathit{\boldsymbol{ \widetilde{p}} }}+\nabla u = 0, \quad (\mathit{\boldsymbol{x}}, t)\in\Omega\times J, \\ u(\mathit{\boldsymbol{x}}, t) = 0, \quad (\mathit{\boldsymbol{x}}, t)\in\partial\Omega\times J. \end{array}\right. \end{eqnarray} $

即(2.9b) 式和(2.9d) 式成立. 同理, 在(2.10c) 式中, 取$ \mathit{\boldsymbol{v}} = \mathit{\boldsymbol{p}}-K\mathit{\boldsymbol{ \widetilde{p}} } $, 可得(2.9c) 式成立. 因此当(2.10) 式成立时, (2.9) 式成立. 即问题(2.9) 与(2.10) 是等价的.

3 半离散格式下的误差估计

问题(2.10) 关于时间连续的扩展混合有限元逼近问题为: 求$ (U(t) $, $ \mathit{\boldsymbol{ \widetilde{p}} }(t), \mathit{\boldsymbol{P}}(t)): [0, T]\rightarrow W_h\times\mathit{\boldsymbol{V}}_h\times\mathit{\boldsymbol{V}}_h $, 使得

$ \begin{eqnarray} &(U(0), w_h) = (Q_hu_0, w_h), \quad \forall w_h\in W_h, \end{eqnarray} $

$ \begin{eqnarray} &(U_t(0), w_h) = (Q_hu_1, w_h), \quad \forall w_h\in W_h, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{ \widetilde{P}} }(0), \mathit{\boldsymbol{v}}_h) = (u_0, \nabla\cdot\mathit{\boldsymbol{v}}_h ), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{P}}(0), \mathit{\boldsymbol{v}}_h) = (-K\nabla u_0, \mathit{\boldsymbol{v}}_h), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{eqnarray} $

$ \begin{eqnarray} &(c(U(t))U_{tt}(t), w_h)+(\nabla\cdot \mathit{\boldsymbol{P}}(t), w_h) = (f(t), w_h), \quad \forall w_h\in W_h, \ \forall t>0, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{ \widetilde{P}} }(t), \mathit{\boldsymbol{v}}_h)-(\nabla\cdot\mathit{\boldsymbol{v}}_h, U(t)) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \ \forall t>0, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{P}}(t), \mathit{\boldsymbol{v}}_h)-(K\mathit{\boldsymbol{ \widetilde{P}} }(t), \mathit{\boldsymbol{v}}_h) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \ \forall t>0. \end{eqnarray} $

为简单起见, 时空范数$ \|\cdot\|_{L^2(0, T;L^2(\Omega))} $定义如下

范数$ \|\cdot\|_{L^\infty(L^2)} $也有类似定义.

定理 3.1  令$ (u(t), \mathit{\boldsymbol{ \widetilde{p}} }(t), \mathit{\boldsymbol{p}}(t)) $$ (U(t), \mathit{\boldsymbol{ \widetilde{p}} }(t), \mathit{\boldsymbol{P}}(t)) $分别是方程(2.10) 和(3.1)–(3.7) 的解. 取$ U(0) = Q_hu_0 $$ U_t(0) = Q_hu_1 $, 则对任意给定的$ t\geq 0 $, 存在不依赖于$ h $$ t $的常数$ C>0 $, 使得

$ \begin{eqnarray} \|u-U\|_{L^\infty( L^2)}+\|(u-U)_t\|_{L^\infty( L^2)}+\|\mathit{\boldsymbol{ \widetilde{p}} }-\mathit{\boldsymbol{ \widetilde{P}} }\|_{L^\infty (L^2)}+\|\mathit{\boldsymbol{ \widetilde{p}} }-\mathit{\boldsymbol{P}}\|_{L^\infty (L^2)}\leq {\cal C}h^{k+1}, \end{eqnarray} $

其中$ {\cal C} = C(\|u\|_{L^2(H^{k+1})}+\|u_{tt}\|_{L^2(H^{k+1})}+\|\mathit{\boldsymbol{ \widetilde{p}} }\|_{L^2(H^{k+1})} +\|\mathit{\boldsymbol{p}}\|_{L^2(H^{k+1})}) $.

  使用(2.1) 式和投影算子$ Q_h $, $ Q^*_h $$ \Pi_h $, 则(2.10a)–(2.10c) 式可改写为

$ \begin{eqnarray} &\left((c(u)u_{tt}), w_h\right)+(\nabla\cdot \Pi_h\mathit{\boldsymbol{ \widetilde{p}} }, w_h) = (f, w_h), \quad \forall w_h\in W_h, \end{eqnarray} $

$ \begin{eqnarray} &(Q^*_h\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}}_h)-(\nabla\cdot\mathit{\boldsymbol{v}}_h, Q_hu) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{ \widetilde{p}} }-\Pi_h\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}}_h)+(\Pi_h\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}}_h)-(K\mathit{\boldsymbol{ \widetilde{p}} }, \mathit{\boldsymbol{v}}_h) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{eqnarray} $

$ \chi = U-Q_hu $, $ \mathit{\boldsymbol{ \widetilde{ξ}} } = \mathit{\boldsymbol{ \widetilde{p}} }-Q_{h}^* {\mathit{\boldsymbol{ \widetilde{p}}} }$, $ \mathit{\boldsymbol{ξ}} = \mathit{\boldsymbol{P}}-\Pi_h\mathit{\boldsymbol{p}} $, $ \eta = u-Q_hu $, $ \mathit{\boldsymbol{ \widetilde{ζ}} } = \mathit{\boldsymbol{ \widetilde{p}} }-Q_{h}^*\mathit{\boldsymbol{ \widetilde{p}} } $$ \mathit{\boldsymbol{ζ}} = \mathit{\boldsymbol{p}}-\Pi_h\mathit{\boldsymbol{p}} $. 由(3.5)–(3.7) 式和(3.9)–(3.11) 式, 可得误差方程

$ \begin{eqnarray} &(c(U)\chi_{tt}, w_h)+(\nabla\cdot \mathit{\boldsymbol{ξ}}, w_h) = ((c(u)-c(U))u_{tt}+c(U)\eta_{tt}, w_h), \ \forall w_h\in W_h, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{v}}_h)-(\nabla\cdot\mathit{\boldsymbol{v}}_h, \chi) = 0, \ \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{eqnarray} $

$ \begin{eqnarray} &(\mathit{\boldsymbol{ξ}}, \mathit{\boldsymbol{v}}_h)-(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{v}}_h) = (\mathit{\boldsymbol{ ζ}}, \mathit{\boldsymbol{v}}_h)-(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{v}}_h), \ \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{eqnarray} $

将(3.13) 式两端关于时间$ t $求导, 得

$ \begin{eqnarray} (\mathit{\boldsymbol{ \widetilde{ξ}} }_t, \mathit{\boldsymbol{v}}_h)-(\nabla\cdot\mathit{\boldsymbol{v}}_h, \chi_t) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{eqnarray} $

在(3.12), (3.14) 和(3.15) 式中分别取$ w_h = \chi_t $, $ \mathit{\boldsymbol{v}}_h = \widetilde{\mathit{\boldsymbol{ξ}}}_t $$ \mathit{\boldsymbol{v}}_h = \mathit{\boldsymbol{ξ}} $, 并结合三式整理可得

$ \begin{eqnarray} (c(U)\chi_{tt}, \chi_t)+(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \widetilde{\mathit{\boldsymbol{ξ}}}_t) = ((c(u)-c(U))u_{tt}+c(U)\eta_{tt}, \chi_t)-(\mathit{\boldsymbol{ ζ}}, \widetilde{\mathit{\boldsymbol{ξ}}}_t) +(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \widetilde{\mathit{\boldsymbol{ξ}}}_t). \end{eqnarray} $

对上式两端关于$ t $从0到$ t $积分, 得

$ \begin{eqnarray} &&\frac{1}{2}\int_{0}^{t}(\frac{\rm d}{{\rm d} t}(c(U)\chi_{t}, \chi_t)+\frac{\rm d}{{\rm d} t}(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{ \widetilde{ξ}} })){\rm d}s\\ & = &\int_{0}^{t}[((c(u)-c(U))u_{tt}+c(U)\eta_{tt}, \chi_t)-(\mathit{\boldsymbol{ ζ}}, \widetilde{\mathit{\boldsymbol{ξ}}}_t) +(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \widetilde{\mathit{\boldsymbol{ξ}}}_t)]{\rm d}s+\frac{1}{2}\int_{0}^{t}(c_u(U)U_{t}\chi_{t}, \chi_t){\rm d}s. {\qquad} \end{eqnarray} $

注意$ \chi(0) = 0 $, $ \widetilde{\mathit{\boldsymbol{ξ}}}(0) $=0, 使用假设条件(I)–(III) 可得

$ \begin{equation} \frac{1}{2}\int_{0}^{t}(\frac{\rm d}{{\rm d} t}(c(U)\chi_{t}, \chi_t) +\frac{\rm d}{{\rm d} t}(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{ \widetilde{ξ}} })){\rm d}s \geq\frac{c_*}{2}||\chi_t||^2+\frac{K_*}{2}||\mathit{\boldsymbol{ \widetilde{ξ}} }||^2, \end{equation} $

$ \begin{eqnarray} \frac{1}{2}\int_{0}^{t}(c_u(U)U_{t}\chi_{t}, \chi_t){\rm d}s& = &\frac{1}{2}\int_{0}^{t}(c_u(U)\chi_{t}\chi_{t}, \chi_t){\rm d}s +\frac{1}{2}\int_{0}^{t}(c_u(U)Q_hu_{t}\chi_{t}, \chi_t){\rm d}s\\ &\leq& C(||\chi_t||_{L^\infty(L^\infty)}+1)\int^t_0\|\chi_t\|^2{\rm d}s. \end{eqnarray} $

由Cauchy不等式和假设条件(I)–(III), 则(3.17) 式的右端各项可估计为

将上述两式进一步利用Young和$ \varepsilon $-Young不等式, 对充分小的常数$ \varepsilon>0 $, 易得

$ \begin{eqnarray} &&((c(u)-c(U))u_{tt}+c(U)\eta_{tt}, \chi_t)+(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \widetilde{\mathit{\boldsymbol{ξ}}}_t)-(\mathit{\boldsymbol{ ζ}}, \widetilde{\mathit{\boldsymbol{ξ}}}_t)\\ &\leq& C(\|\eta\|^2+\|\eta_{tt}\|^2+\|\mathit{\boldsymbol{ ζ}}\|^2+\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|^2 +\|\chi\|^2+\|\chi_t\|^2 + \varepsilon\|\widetilde{\mathit{\boldsymbol{ξ}}}_t\|^2 ). \end{eqnarray} $

结合(3.17)–(3.20) 式可得

$ \begin{eqnarray} ||\chi_t||^2+||\mathit{\boldsymbol{ \widetilde{ξ}} }||^2\leq C\int_0^t(\|\eta\|^2+\|\eta_{tt}\|^2+\|\mathit{\boldsymbol{ ζ}}\|^2+\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|^2 +\|\chi\|^2+\|\chi_t\|^2){\rm d}s. \end{eqnarray} $

在(3.14) 式中, 取$ \mathit{\boldsymbol{v}}_h = \mathit{\boldsymbol{ξ}} $, 得

$ \begin{eqnarray} (\mathit{\boldsymbol{ξ}}, \mathit{\boldsymbol{ξ}}) = (K\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{ξ}})+(\mathit{\boldsymbol{ ζ}}, \mathit{\boldsymbol{ξ}})-(K\mathit{\boldsymbol{ \widetilde{ξ}} }, \mathit{\boldsymbol{ξ}}). \end{eqnarray} $

由(3.22) 式可以推出

$ \begin{eqnarray} \|\mathit{\boldsymbol{ξ}}\|\leq C(\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|+\|\mathit{\boldsymbol{ ζ}}\| +\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|). \end{eqnarray} $

注意到$ \chi(0) = 0 $, $ ||\chi||^2\leq T\int_{0}^{t}||\chi_t||^2{\rm d}s $, 因此在(3.21) 式的两端同时加上一项$ ||\chi||^2 $, 并使用(3.23) 式得

上式利用Gronwall引理, 得

$ \begin{eqnarray} \|\chi\|^2(t)+\|\chi_t\|^2(t) +\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|^2(t)+\|\mathit{\boldsymbol{ξ}}\|^2(t) \leq C\int_0^t(\|\eta\|^2+\|\eta_{tt}\|^2+\|\mathit{\boldsymbol{ ζ}}\|^2+\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|^2){\rm d}s. \end{eqnarray} $

对(3.24) 式中的$ t $取上确界可得

$ \begin{eqnarray} &&\|\chi\|_{L^\infty(L^2)}^2 +\|\chi_t\|_{L^\infty(L^2)}^2 +\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|_{L^\infty(L^2)}^2+\|\mathit{\boldsymbol{ξ}}\|_{L^\infty(L^2)}^2\\ &\leq& C(\|\eta\|_{L^2(L^2)}^2 +\|\eta_{tt}\|_{L^2(L^2)}^2+\|\mathit{\boldsymbol{ ζ}}\|_{L^2(L^2)}^2 +\|\mathit{\boldsymbol{ \widetilde{ξ}} }\|_{L^2(L^2)}^2 ). \end{eqnarray} $

最后, 利用三角不等式, 结合(2.6)、(2.7) 和(3.25)式, 可推出(3.8) 式成立.

4 全离散格式下的误差估计

对时间变量应用差分离散化, 将区间$ [0, T] $分成$ N $个相等的子区间: $ 0\leq t_0<t_1<\cdots<t_{N-1}<t_N = T $, $ t_{n+1}-t_n = \Delta t $. 为了简单起见, 令$ \varphi^n = \varphi(t_n) $, 其它的一些记号表示如下

$ \begin{equation} \begin{array}{c} { } \varphi^{n+\frac{1}{2}} = \frac{\varphi^{n+1}+\varphi^n}{2}, \quad\varphi^{n, \frac{1}{2}} = \frac{\varphi^{n+1}+\varphi^{n-1}}{2}, {\quad} \partial_t\varphi^{n+\frac{1}{2}} = \frac{\varphi^{n+1}-\varphi^n}{\Delta t}, \\ { } \partial_t\varphi^n = \frac{\varphi^{n+1}-\varphi^{n-1}}{2\Delta t}, {\quad} \partial_{tt}\varphi^n = \frac{\varphi^{n+1}-2\varphi^n+\varphi^{n-1}}{(\Delta t)^2}. \end{array} \end{equation} $

下面的关系式容易得到

问题(2.10) 的全离散逼近格式为: 求$ (u_h^{0}, \mathit{\boldsymbol{ \widetilde{p}} }_h^{0}, \mathit{\boldsymbol{p}}_h^{0})\in W_h\times\mathit{\boldsymbol{V}}_h\times\mathit{\boldsymbol{V}}_h $, 满足

$ \begin{equation} ({u}_h^{0}, {w}_h) = (u_0, {w}_h ), \quad \forall {w}_h\in {W}_h, \end{equation} $

$ \begin{equation} (\mathit{\boldsymbol{ \widetilde{p}} }_h^{0}, \mathit{\boldsymbol{v}}_h) = (u_0, \nabla\cdot\mathit{\boldsymbol{v}}_h ), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{equation} $

$ \begin{equation} (\mathit{\boldsymbol{ \widetilde{p}} }_h^{0}, \mathit{\boldsymbol{v}}_h) = (-K\nabla u_0, \mathit{\boldsymbol{v}}_h ), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h \end{equation} $

$ (u_h^{1}, \mathit{\boldsymbol{ \widetilde{p}} }_h^{1}, \mathit{\boldsymbol{p}}_h^{1})\in W_h\times\mathit{\boldsymbol{V}}_h\times\mathit{\boldsymbol{V}}_h $, 满足

$ \begin{equation} \left(\frac{{u}_h^{1}-{u}_h^{-1}}{2\Delta t}, {w}_h\right) = (u_1, {w}_h ), \quad \forall {w}_h\in {W}_h, \end{equation} $

$ \begin{equation} \left(\frac{\mathit{\boldsymbol{ \widetilde{p}} }_h^{1}-\mathit{\boldsymbol{ \widetilde{p}} }_h^{-1}}{2\Delta t}, \mathit{\boldsymbol{v}}_h\right) = (u_1, \nabla\cdot\mathit{\boldsymbol{v}}_h ), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{equation} $

$ \begin{equation} \left(\frac{\mathit{\boldsymbol{ \widetilde{p}} }_h^{1}-\mathit{\boldsymbol{ \widetilde{p}} }_h^{-1}}{2\Delta t}, \mathit{\boldsymbol{v}}_h\right) = (-K\nabla u_1, \mathit{\boldsymbol{v}}_h ), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

$ n\geq 0 $, 求$ (u_h^{n+1}, \mathit{\boldsymbol{ \widetilde{p}} }_h^{n+1}, \mathit{\boldsymbol{p}}_h^{n+1})\in W_h\times\mathit{\boldsymbol{V}}_h\times\mathit{\boldsymbol{V}}_h $, 使得

$ \begin{equation} (c(u_h^{n+1})\partial_{tt}u_h^n, w_h)+(\nabla\cdot \mathit{\boldsymbol{ \widetilde{p}} }^{n, \frac{1}{2}}_h, w_h) = (f^{n, \frac{1}{2}}, w_h), \quad \forall w_h\in W_h, \end{equation} $

$ \begin{equation} (\mathit{\boldsymbol{ \widetilde{p}} }_h^{n+1}, \mathit{\boldsymbol{v}}_h)-(\nabla\cdot\mathit{\boldsymbol{v}}_h, u_h^{n+1}) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{equation} $

$ \begin{equation} (K\mathit{\boldsymbol{ \widetilde{p}} }_h^{n+1}, \mathit{\boldsymbol{v}}_h)-(\mathit{\boldsymbol{ \widetilde{p}} }_h^{n+1}, \mathit{\boldsymbol{v}}_h) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

定理 4.1  令$ (u^n, \mathit{\boldsymbol{ \widetilde{p}} }^n, \mathit{\boldsymbol{p}}^n) $$ (u_h^n, \mathit{\boldsymbol{ \widetilde{p}} }_h^n, \mathit{\boldsymbol{p}}_h^n) $分别是方程(2.10) 和(4.2)–(4.10) 在$ t = t^n $时的解. 假设$ \Delta t $, $ h $充分小, 取$ u_h^0 = Q_hu^0 $, $ u_h^1 = Q_hu^1 $, 则存在常数$ C $, 使得下述估计成立

$ \begin{eqnarray} \sup\limits_n\{||\partial_t(u-u_h)^{n-\frac{1}{2}}||+||u^n-u_h^n||+||\mathit{\boldsymbol{ \widetilde{p}} }^n-\mathit{\boldsymbol{ \widetilde{p}} }_h^n|| +||\mathit{\boldsymbol{ \widetilde{p}} }^n-\mathit{\boldsymbol{ \widetilde{p}} }_h^n||\}\leq C(h^{k+1}+\Delta t^2). \end{eqnarray} $

  利用(2.1) 式和投影算子$ Q_h $, $ Q^*_h $$ \Pi_h $, 则(2.10a)–(2.10c) 式可改写为

$ \begin{equation} \left((c(u)u_{tt})^{n, \frac{1}{2}}, w_h\right)+(\nabla\cdot \Pi_h\mathit{\boldsymbol{ \widetilde{p}} }^{n, \frac{1}{2}}, w_h) = (f^{n, \frac{1}{2}}, w_h), \quad \forall w_h\in W_h, \end{equation} $

$ \begin{equation} (Q^*_h\mathit{\boldsymbol{ \widetilde{p}} }^{n+1}, \mathit{\boldsymbol{v}}_h)-(\nabla\cdot\mathit{\boldsymbol{v}}_h, Q_hu^{n+1}) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{equation} $

$ \begin{equation} (K\mathit{\boldsymbol{ \widetilde{p}} }^{n+1}, \mathit{\boldsymbol{v}}_h)-(\mathit{\boldsymbol{ \widetilde{p}} }^{n+1}-\Pi_h\mathit{\boldsymbol{ \widetilde{p}} }^{n+1}, \mathit{\boldsymbol{v}}_h) = (\Pi_h\mathit{\boldsymbol{ \widetilde{p}} }^{n+1}, \mathit{\boldsymbol{v}}_h), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

$ \mu^n = Q_hu^n-u_h^n $, $ \varpi^n = Q_h^*\mathit{\boldsymbol{ \widetilde{p}} }^n-\mathit{\boldsymbol{ \widetilde{p}} }_h^n $, $ \omega^n = \Pi_h\mathit{\boldsymbol{p}}^n-\mathit{\boldsymbol{p}}_h^n $, $ \varsigma^n = u^n-Q_hu^n $, $ \tau^n = \mathit{\boldsymbol{ \widetilde{p}} }^{n}-Q_h^*\mathit{\boldsymbol{ \widetilde{p}} }^{n} $$ \varrho^n = \mathit{\boldsymbol{p}}^{n}-\Pi_h\mathit{\boldsymbol{p}}^{n} $. 将(4.12)–(4.14) 式减去(4.8)–(4.10)式, 整理可得

$ \begin{eqnarray} &&(c(u_h^{n+1})\partial_{tt}\mu^n, w_h)+(\nabla\cdot \omega^{n, \frac{1}{2}}, w_h){}\\ & = &(c(u_h^{n+1})\partial_{tt}u^n-(c(u)u_{tt})^{n, \frac{1}{2}} -c(u_h^{n+1})\partial_{tt}\varsigma^n, w_h), \ \forall w_h\in W_h, \end{eqnarray} $

$ \begin{equation} (\varpi^{n+1}, \mathit{\boldsymbol{v}}_h)-(\mu^{n+1}, \nabla\cdot \mathit{\boldsymbol{v}}_h) = 0, \ \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{equation} $

$ \begin{equation} (K\varpi^{n+1}, \mathit{\boldsymbol{v}}_h)-(\omega^{n+1}, \mathit{\boldsymbol{v}}_h) = (\varrho^{n+1}, \mathit{\boldsymbol{v}}_h)-(K\tau^{n+1}, \mathit{\boldsymbol{v}}_h), \ \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

由(4.1)式, 方程(4.16) 和(4.17) 可写成

$ \begin{equation} (\partial_t\varpi^{n}, \mathit{\boldsymbol{v}}_h)-(\partial_t\mu^{n}, \nabla\cdot \mathit{\boldsymbol{v}}_h) = 0, \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h, \end{equation} $

$ \begin{equation} (K\varpi^{n, \frac{1}{2}}, \mathit{\boldsymbol{v}}_h)-(\omega^{n, \frac{1}{2}}, \mathit{\boldsymbol{v}}_h) = (\varrho^{n, \frac{1}{2}}, \mathit{\boldsymbol{v}}_h)-(K\tau^{n, \frac{1}{2}}, \mathit{\boldsymbol{v}}_h), \quad \forall \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

$ w_h = \partial_t\mu^n $, $ \mathit{\boldsymbol{v}}_h = \omega^{n, \frac{1}{2}} $$ \mathit{\boldsymbol{v}}_h = \partial_t\varpi^{n} $分别代入(4.15), (4.18) 和(4.19) 式中, 然后整理可得

$ \begin{eqnarray} &&(c(u_h^{n+1})\partial_{tt}\mu^n, \partial_t\mu^n)+(K\varpi^{n, \frac{1}{2}}, \partial_t\varpi^{n})\\ & = &(c(u_h^{n+1})\partial_{tt}u^n-(c(u)u_{tt})^{n, \frac{1}{2}}-c(u_h^{n+1})\partial_{tt}\varsigma^n, \partial_t\mu^n) +(\varrho^{n, \frac{1}{2}}-K\tau^{n, \frac{1}{2}}, \partial_t\varpi^{n}). \end{eqnarray} $

此外, 在(4.19) 式中, 取$ \mathit{\boldsymbol{v}}_h = \partial_t\omega^{n} $, 得

$ \begin{eqnarray} (\omega^{n, \frac{1}{2}}, \partial_t\omega^{n}) = (K\varpi^{n, \frac{1}{2}}, \partial_t\omega^n)+(K\tau^{n, \frac{1}{2}}, \partial_t\omega^{n})-(\varrho^{n, \frac{1}{2}}, \partial_t\omega^{n}). \end{eqnarray} $

结合(4.20) 和(4.21)式, 可得

$ \begin{eqnarray} &&(c(u_h^{n+1})\partial_{tt}\mu^n, \partial_t\mu^n)+(K\varpi^{n, \frac{1}{2}}, \partial_t\varpi^{n})+(\omega^{n, \frac{1}{2}}, \partial_t\omega^{n})\\ & = &(c(u_h^{n+1})\partial_{tt}u^n-(c(u)u_{tt})^{n, \frac{1}{2}}-c(u_h^{n+1})\partial_{tt}\varsigma^n, \partial_t\mu^n) +(\varrho^{n, \frac{1}{2}}, \partial_t\varpi^{n})\\ &&-(K\tau^{n, \frac{1}{2}}, \partial_t\varpi^{n}) +(K\varpi^{n, \frac{1}{2}}, \partial_t\omega^n)+(K\tau^{n, \frac{1}{2}}, \partial_t\omega^{n})-(\varrho^{n, \frac{1}{2}}, \partial_t\omega^{n}). \end{eqnarray} $

将(4.22) 式两边同乘以$ 2\Delta t $, 再让$ n = 1, 2, \cdots, l-1 $ ($ 1<l<N $) 相加, 可得

$ \begin{eqnarray} &&2\Delta t\sum\limits_{n = 1}^{l-1}\{(c(u_h^{n+1})\partial_{tt}\mu^n, \partial_t\mu^n)+(K\varpi^{n, \frac{1}{2}}, \partial_t\varpi^{n}) +(\omega^{n, \frac{1}{2}}, \partial_t\omega^{n})\}\\ & = &2\Delta t\sum\limits_{n = 1}^{l-1}(c(u_h^{n+1})\partial_{tt}u^n-(c(u)u_{tt})^{n, \frac{1}{2}}-c(u_h^{n+1})\partial_{tt}\varsigma^n, \partial_t\mu^n) {}\\ && +2\Delta t\sum\limits_{n = 1}^{l-1}\{(\varrho^{n, \frac{1}{2}}, \partial_t\varpi^{n}) -(K\tau^{n, \frac{1}{2}}, \partial_t\varpi^{n})\}\\ && +2\Delta t\sum\limits_{n = 1}^{l-1}\{(K\varpi^{n, \frac{1}{2}}, \partial_t\omega^n)+(K\tau^{n, \frac{1}{2}}, \partial_t\omega^{n}) -(\varrho^{n, \frac{1}{2}}, \partial_t\omega^{n})\}\\ & = &F_1+F_2+F_3, \end{eqnarray} $

其中

注意到$ \partial_t\mu^{\frac{1}{2}} = \frac{\mu^1-\mu^0}{\Delta t} $. 取初始函数$ u_h^0 = Q_hu^0 $, $ u_h^1 = Q_hu^1 $, 则有$ \partial_t\mu^{\frac{1}{2}} = 0 $. 在(4.16) 式中, 取$ n = 0 $, $ \mathit{\boldsymbol{v}}_h = \varpi^{1} $, 可得$ \varpi^{1} $=0. 此外, 由(4.2)–(4.7)式, 我们推出$ \varpi^0 = \omega^0 = \omega^{1} $=0. 因此, 使用假设条件(I) 和(II), (4.23) 式中的左端项可以估计为

$ \begin{eqnarray} &&2\Delta t\sum\limits_{n = 1}^{l-1}\{(c(u_h^{n+1})\partial_{tt}\mu^n, \partial_t\mu^n) +(K\varpi^{n, \frac{1}{2}}, \partial_t\varpi^{n})+(\omega^{n, \frac{1}{2}}, \partial_t\omega^{n})\}\\ & = &\frac{1}{2}\sum\limits_{n = 1}^{l-1}\{(K(\varpi^{n+1}-\varpi^{n-1}), \varpi^{n+1}+\varpi^{n-1})+(\omega^{n+1}-\omega^{n-1}, \omega^{n+1}+\omega^{n-1})\} \\ &&+\sum\limits_{n = 1}^{l-1}(c(u_h^{n+1})(\partial_t\mu^{n+\frac{1}{2}}-\partial_t\mu^{n-\frac{1}{2}}), \partial_t\mu^{n+\frac{1}{2}} -\partial_t\mu^{n-\frac{1}{2}}) \\ &\geq&c_*\|\partial_t\mu^{l-\frac{1}{2}}\|^2+\frac{K_*}{2}(\|\varpi^{l}\|^2+\|\varpi^{l-1}\|^2)+\frac{1}{2}(\|\omega^{l}\|^2+\|\omega^{l-1}\|^2). \end{eqnarray} $

我们也注意到$ \partial_{tt}u^n = \frac{u^{n+1}-2u^n+u^{n-1}}{(\Delta t)^2} $, 使用泰勒级数对$ u^{n+1} $$ u^{n-1} $$ u(t^n) $处展开, 得

上述两式相加有

$ \begin{eqnarray} u^{n+1}+u^{n-1} = 2u^n+\Delta t^2\frac{\partial^2 u}{\partial t^2}(t^n)-\frac{1}{6}\int_{-\Delta t}^{\Delta t}(|t|-\Delta t)^3\frac{\partial^4 u}{\partial t^4}(t^n+t){\rm d}t. \end{eqnarray} $

利用(4.25) 式可得

从而有

$ \begin{eqnarray} \|\partial_{tt}u^n-u_{tt}^n\|^2&\leq& C\Delta t^2\int_\Omega\left[\int_{t^n-\Delta t}^{t^n+\Delta t}\frac{\partial^4u}{\partial t^4}(t)\right]^2{\rm d}t \leq C\Delta t^3\int_{t^n-\Delta t}^{t^n+\Delta t}\left\|\frac{\partial^4u}{\partial t^4}(t)\right\|^2{\rm d}t\\ &\leq &C\Delta t^4\left\|\frac{\partial^4u}{\partial t^4}(t)\right\|^2_{L^\infty(L^2)}. \end{eqnarray} $

接下来, 我们对(4.23) 式中的右端各项分别进行估计, 首先, 关于第一项$ F_1 $, 考虑到

及使用(2.6)式, (4.26) 式和Young不等式, 可得

$ \begin{eqnarray} &&2\Delta t\sum\limits_{n = 1}^{l-1}(c(u_h^{n+1})\partial_{tt}u^n-(c(u)u_{tt})^{n, \frac{1}{2}}-c(u_h^{n+1})\partial_{tt}\varsigma^n, \partial_t\mu^n)\\ & = &2\Delta t\sum\limits_{n = 1}^{l-1}((c(u_h^{n+1})-c(Q_hu^{n+1})+c(Q_hu^{n+1})-c(u^{n+1}))\partial_{tt}u^n \\ &&+c(u^{n+1}) (\partial_{tt}u^n-u_{tt}^n)+c(u^{n+1})u_{tt}^n-(c(u)u_{tt})^{n, \frac{1}{2}}-c(u_h^{n+1})\partial_{tt}\varsigma^n, \partial_t\mu^n)\\ &\leq& C\{h^{2k+2}+\Delta t^4+\Delta t\sum\limits_{n = 1}^{l}\|\partial_t\mu^{n-\frac{1}{2}}\|^2+\Delta t\sum\limits_{n = 1}^{l-1}\|\mu^{n}\|^2\}. \end{eqnarray} $

关于第二项$ F_2 $, 利用(2.7) 式和$ \varepsilon $-Young不等式, 对充分小$ \varepsilon>0 $, 有

$ \begin{eqnarray} 2\Delta t\sum\limits_{n = 1}^{l-1}\{(\varrho^{n, \frac{1}{2}}, \partial_t\varpi^{n}) -(K\tau^{n, \frac{1}{2}}, \partial_t\varpi^{n})\} \leq C \{h^{2k+2}+\varepsilon\Delta t\sum\limits_{n = 1}^{l-1}\|\partial_t\varpi^{n}\|^2\}. \end{eqnarray} $

同样, 关于第三项$ F_3 $可以推出

$ \begin{eqnarray} &&2\Delta t\sum\limits_{n = 1}^{l-1}\{(K\varpi^{n, \frac{1}{2}}, \partial_t\omega^n)+(K\tau^{n, \frac{1}{2}}, \partial_t\omega^{n}) -(\varrho^{n, \frac{1}{2}}, \partial_t\omega^{n})\}\\ &\leq &C \{h^{2k+2}+\Delta t\sum\limits_{n = 1}^{l-1}(\|\varpi^{n}\|^2+\|\varpi^{n-1}\|^2)+\varepsilon\Delta t\sum\limits_{n = 1}^{l-1}\|\partial_t\omega^n\|^2\}. \end{eqnarray} $

(4.16) 式可写成

$ \begin{equation} (\varpi^{n+1}, \mathit{\boldsymbol{v}}_h)+(\nabla\mu^{n+1}, \mathit{\boldsymbol{v}}_h) = 0, \ \mathit{\boldsymbol{v}}_h\in \mathit{\boldsymbol{V}}_h. \end{equation} $

在(4.30) 式中, 取$ \mathit{\boldsymbol{v}}_h = \nabla u_h^{n+1} $, 得

使用离散的Sobolev嵌入不等式[15], 有

$ \begin{equation} \|\mu^{n+1}\|\leq C_1\|\varpi^{n+1}\|, \end{equation} $

其中$ C_1 $与区域$ \Omega $$ p $ ($ 1\leq p<\infty $) 有关. 将(4.24), (4.27)–(4.29) 和(4.31) 式结合可得

$ \begin{eqnarray} &&\|\partial_t\mu^{l-\frac{1}{2}}\|^2+\|\mu^{l}\|^2+\|\varpi^{l}\|^2+\|\varpi^{l-1}\|^2+\|\omega^{l}\|^2+\|\omega^{l-1}\|^2\\ &\leq & C\{\Delta t^4+h^{2k+2}+\Delta t\sum\limits_{n = 1}^{l-1}(\|\varpi^{n}\|^2+\|\varpi^{n-1}\|^2+\|\mu^{n}\|^2+\|\partial_t\mu^{n-\frac{1}{2}}\|^2)\}. \end{eqnarray} $

应用Gronwall不等式, 得

$ \begin{eqnarray} \|\partial_t\mu^{l-\frac{1}{2}}\|^2+\|\mu^l\|^2+\|\omega^l\|^2+\|\varpi^{l}\|^2 \leq C\{\Delta t^4+h^{2k+2}\}. \end{eqnarray} $

最后, 使用三角不等式, 结合(2.6), (2.7) 和(4.33)式, 推出(4.11) 式成立.

5 数值例子

本节我们给出一个数值例子来验证理论分析结果. 在数值计算中, 使用简单的迭代法来处理(4.2)–(4.10) 式中的非线性项, 即用前一次迭代得到的解$ u^{k} $的值来替换本次迭代的非线性项$ c(u^{k+1}) $$ u^{k+1} $的值, 其中$ k $为迭代指数. 这里, 非线性项$ c(u^{k+1})u^{k+1} $$ c(u^{k})u^{k+1} $来逼近. 此外, 我们选择$ \epsilon = 10^{-8} $作为迭代算法的控制精度.

考虑以下二阶非线性双曲型方程

其中$ \mathit{\boldsymbol{x}} = (x_1, x_2)^T $, $ \Omega = [0, 1]^2 $, $ J = (0, 1] $, $ K = \frac{1}{10^5}\left( \begin{array}{cc} 1+ x_1^2&0 \\ 0& 1+ x_2^2\\ \end{array} \right) $, $ f $是由精确解$ u $的取值来决定的, 该问题的精确解为$ u(\mathit{\boldsymbol{x}}, t) = t^2\cos(\pi t)\sin^2(\pi x_1)\sin^2(\pi x_2) $.

考虑$ k = 1 $的Raviart-Thomas混合元空间(RT$ _1 $). 空间区域$ \Omega $采用具有拟一致网格步长的三角形剖分, 分别取$ h = \{\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}\} $进行计算, 即每次空间网格$ h $的选取为前一次的一半. 此外, 采用一个固定的时间步长$ \Delta t = 1.0e-3 $. 数值计算结果如表 1图 1所示. 在表 1中, 我们观察到实验误差收敛阶接近$ 2 $, 这与理论分析结果一致. 在图 1中, 数值解$ u_h $与精确解$ u $的图像几乎一致.

表 1   扩展混合有限元解的误差估计及收敛阶

h$\|u-u_h\|$Rate$\|\mathit{\boldsymbol{ \widetilde{p}} }-\mathit{\boldsymbol{ \widetilde{p}} }_h\|$Rate$\|\mathit{\boldsymbol{p} }-\mathit{\boldsymbol{ p}} _h\|$Rate
1/43.0894e-2-9.2725e-1-9.5987e-1-
1/88.2781e-31.902.4845e-11.902.5898e-11.89
1/162.1875e-31.926.6111e-21.916.9392e-21.90
1/325.8207e-41.911.7591e-21.911.8593e-21.90
1/641.5489e-41.914.6810e-31.914.9475e-31.91

新窗口打开| 下载CSV


图 1

图 1   (a) 精确解u图像; (b) 数值解uh图像


参考文献

Renardy M , Hrusa W , Nohel J . Mathematical Problems in Viscoelasticity. New York: Longman Higher Education Press, 1987

[本文引用: 2]

Brekhovskihk L M . Waves in Layered Media. New York: Academic Press, 1980

Baker G A .

Error estimates for finite element methods for second order hyperbolic equations

SIAM J Numer Anal, 1976, 13 (4): 564- 576

DOI:10.1137/0713048     

Geveci T .

On the application of mixed finite element methods to the wave equation

Math Model Numer Anal, 1988, 22 (2): 243- 250

DOI:10.1051/m2an/1988220202431     

Wang K Y , Chen Y P .

Analysis of two-grid discretization scheme for semilinear hyperbolic equations by mixed finite element methods

Math Meth Appl Sci, 2018, 41 (9): 3370- 3391

DOI:10.1002/mma.4831      [本文引用: 1]

Chen Z X .

BDM mixed methods for a nonlinear elliptic problem

J Comput Appl Math, 1994, 53 (2): 207- 223

DOI:10.1016/0377-0427(94)90046-9      [本文引用: 1]

Chen Z X .

Expanded mixed finite element methods for linear second order elliptic problems (Ⅰ)

RAIRO: Math Model Numer Anal, 1998, 32 (4): 479- 499

DOI:10.1051/m2an/1998320404791      [本文引用: 1]

Chen Z X .

Expanded mixed finite element methods for quasilinear second-order elliptic problems (Ⅱ)

RAIRO: Math Model Numer Anal, 1998, 32 (4): 501- 520

DOI:10.1051/m2an/1998320405011      [本文引用: 1]

Arbogast T , Wheeler M F , Yotov I .

Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences

SIAM J Numer Anal, 1997, 34 (2): 828- 852

DOI:10.1137/S0036142994262585      [本文引用: 1]

Woodward C S , Dawson C N .

Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modelling flow into variably saturated porous media

SIAM J Numer Anal, 2000, 37 (3): 701- 724

DOI:10.1137/S0036142996311040      [本文引用: 1]

Gatica G N , Heuer N .

An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method

J Comput Appl Math, 2001, 132 (2): 371- 385

DOI:10.1016/S0377-0427(00)00440-4      [本文引用: 1]

Liu Y , Fang Z C , Li H , et al.

A new expanded mixed method for parabolic integro-differential equations

Appl Math Comput, 2015, 259, 600- 613

[本文引用: 1]

Sharma N , Pani A K , Sharma K K .

Expanded mixed FEM with lowest order RT elements for nonlinear and nonlocal parabolic problems

Adv Comput Math, 2018, 44 (5): 1537- 1571

DOI:10.1007/s10444-018-9596-6      [本文引用: 1]

Raviart P A, Thomas T M. A Mixed Finite Element Method for Second Order Elliptic Problems//Galligam I, Magenes E. Mathematical Aspects of Finte Eelement Methods. Berlin: Springer, 1977: 292-315

[本文引用: 2]

Gao H D , Qiu W F .

Error analysis of mixed finite element methods for nonlinear parabolic equations

J Sci Comput, 2018, 77, 1660- 1678

DOI:10.1007/s10915-018-0643-8      [本文引用: 1]

/