数学物理学报, 2021, 41(1): 100-125 doi:

论文

带真空无磁扩散不可压磁流体方程柯西问题的局部适定性

陈明涛1, 苏文火,2, 臧爱彬2

Local well-Posedness for the Cauchy Problem of 2D Nonhomogeneous Incompressible and Non-Resistive MHD Equations with Vacuum

Chen Mingtao1, Su Wenhuo,2, Zang Aibin2

通讯作者: 苏文火, E-mail: suwenhuo@jxycu.edu.cn

收稿日期: 2019-12-12  

基金资助: 国家自然科学基金.  11801495
国家自然科学基金.  11771382
江西省教育厅科技项目.  GJJ201629
山东省自然科学基金.  ZR2019MA050

Received: 2019-12-12  

Fund supported: the NSFC.  11801495
the NSFC.  11771382
the Science and Technology Project of Education Department in Jiangxi Province.  GJJ201629
the NSF of Shandong Province.  ZR2019MA050

Abstract

In this paper, we investigate the Cauchy problem of the nonhomogeneous incompressible and non-resistive MHD on ${\Bbb R}$2 with vacuum as far field density and prove that the 2D Cauchy problem has a unique local strong solution provided that the initial density and magnetic field decay not too slow at infinity. Furthermore, if the initial data satisfy some additional regularity and compatibility conditions, the strong solution becomes a classical one. Moreover, we also establish a blowup criterion which depends only on the Magnetic fields.

Keywords: 2D non-resistive MHD equations ; Vacuum ; Classical solutions ; Blowup criterion

PDF (495KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈明涛, 苏文火, 臧爱彬. 带真空无磁扩散不可压磁流体方程柯西问题的局部适定性. 数学物理学报[J], 2021, 41(1): 100-125 doi:

Chen Mingtao, Su Wenhuo, Zang Aibin. Local well-Posedness for the Cauchy Problem of 2D Nonhomogeneous Incompressible and Non-Resistive MHD Equations with Vacuum. Acta Mathematica Scientia[J], 2021, 41(1): 100-125 doi:

1 引言

二维空间中, 非齐次不可压缩流体的运动可以由如下方程组描述

$ \begin{equation} \left\{ \begin{array}{lll} \varrho_t+( {\bf u}\cdot\nabla) \varrho = 0, \\ ( \varrho {\bf u})_t+ {{\rm{div }}}( \varrho {\bf u}\otimes {\bf u})+\nabla \pi = \mu \triangle {\bf u}+( \nabla\times {\bf H})\times {\bf H}, \\ {\bf H}_t+ {\bf u}\cdot \nabla {\bf H} = \nu\triangle {\bf H} + {\bf H}\cdot \nabla {\bf u}, \\ {{\rm{div }}} {\bf u} = 0, \quad {{\rm{div }}} {\bf H} = 0, \end{array} \right. \end{equation} $

这里$ \varrho = \varrho(t, {\bf x}) $, $ {\bf u} = ( {\bf u}_1, {\bf u}_2)(t, {\bf x}) $, $ {\bf H} = ( {\bf H}_1, {\bf H}_2)(t, {\bf x}) $以及$ \pi = \pi(t, {\bf x}) $分别表示流体的密度、速度、磁场强度以及流体受到的压力, 常数$ \mu > 0 $表示流体的粘性系数, $ \nu > 0 $表示磁耗散系数.

磁流体动力学方程组(即MHD方程组)描述了导电流体在磁场中的运动规律, 它具有十分重要的物理意义以及很强的物理应用背景.由于流体的运动深受磁场的影响, 因此流体的速度和磁场产生强耦合, 导致方程具有很强的非线性.关于磁流体动力学方程的物理特性, 很多文献给出了许多详细的介绍[3, 22].

如果不考虑磁场对流体的影响, 即$ {\bf H} = 0 $, 则MHD方程组(1.1)可简化为大家熟知的Navier-Stokes方程组.关于Navier-Stokes方程组的适定性问题已经有大量的研究结果, 参见文献[1, 8-10, 18, 20-21, 24, 26, 29, 33], 对于MHD方程组同样也有很多研究, 参见文献[2, 7, 27-28, 32].

该文主要考虑当磁场强度随着流体运动而变化, 而非简单的往外扩散, 且流体具有非常强导电性的MHD方程组, 称为无磁扩散MHD方程组

$ \begin{equation} \left\{ \begin{array}{lll} \varrho_t+( {\bf u}\cdot\nabla) \varrho = 0, \\ ( \varrho {\bf u})_t+ {{\rm{div }}}( \varrho {\bf u}\otimes {\bf u})+\nabla \pi = \mu \triangle {\bf u}+( \nabla\times {\bf H})\times {\bf H}, \\ {\bf H}_t+ {\bf u}\cdot \nabla {\bf H} = {\bf H}\cdot \nabla {\bf u}, \\ {{\rm{div }}} {\bf u} = 0, \quad {{\rm{div }}} {\bf H} = 0, \end{array} \right. \end{equation} $

初值条件为

$ \begin{equation} ( \varrho, {\bf u}, {\bf H})(0, {\bf x}) = ( \varrho_0, {\bf u}_0, {\bf H}_0)( {\bf x}), \quad {\bf x}\in {\mathbb{R}}^2, \end{equation} $

在弱意义下, 满足如下的远场条件

$ \begin{equation} {\bf u}(t, {\bf x})\rightarrow {\bf 0}, \quad \varrho(t, {\bf x})\rightarrow 0, \quad {\bf H}(t, {\bf x})\rightarrow 0\quad {\rm \mbox{当}}\ | {\bf x}|\rightarrow\infty, \quad t\geq0. \end{equation} $

关于该方程的物理描述可参见文献[3, 4, 14, 22]的结果.

事实上, 对方程(1.2)同样有很多的结论, 当密度$ \varrho $为常数时, 方程(1.2)称为齐次的.酒全森和牛冬娟[19]出了初值在$ H^s $ ($ s $为大于等于3的整数)空间时方程组(1.2)解的局部存在性.林芳华等[25]对于方程组(1.2)给出了一个标志性结果, 当初值充分靠近平衡态解时, 在二维情形下证明了全局解的存在性.任晓霞等[31]对林芳华的结果进行了改进, 当对初值去掉一些假设之后结论仍然成立, 并证明了MHD方程组的能量以不依赖于电阻的速率衰减.在三维周期情形, 潘荣华等[30]证明了当初值靠近平衡态, 初始速度满足对称性条件时, 不可压MHD方程全局经典解的存在性. Fefferman等[12]将潘荣华的结论推广到$ d $维全空间$ d = (2, 3) $, 并给出一个令人惊喜的结论:当$ {\bf H}_0\in H^s( {\mathbb{R}}^d) $$ {\bf u}_0\in H^{s-1+ \varepsilon}( {\mathbb{R}}^d) $, 其中$ s>d/2 $以及$ 0< \varepsilon<1 $时, 即在靠近临界指标索伯列夫空间附近证明了局部解的存在性和唯一性.由于动量方程含有耗散项, Chemin等[5]通过对初值提出更少的正则性假设, 当$ {\bf u}_0\in B_{2, 1}^{d/2-1}( {\mathbb{R}}^d) $以及$ {\bf H}_0\in B_{2, 1}^{d/2}( {\mathbb{R}}^d) $时, 在Besov空间中证明了解的局部存在性.

当密度$ \varrho $不为常数时, 方程(1.2)称为非齐次的.在真空远场条件下流体动力学适定性问题一直是个研究的热点.最近, 李竞等[23]在整个平面$ {\mathbb{R}}^2 $上证明了二维可压Navier-Stokes方程柯西问题强解和经典解的存在性.当初值包含真空时, 黄祥娣等[17]给出了非齐次不可压MHD全局解存在性的证明.受文献[16-17, 23]的启发, 梁之磊[24]和吕博强等人[27-29]得到一系列关于初始真空非齐次不可压Navier-Stokes方程的适定性结论.然而对于非齐次不可压无磁扩散的流体方程的相关结论还非常少, 尤其是在初始真空具有紧支集时.因此, 该文主要讨论真空远场条件下二维零磁耗散MHD方程的适定性问题.下面给出主要结果.

定理1.1  设$ \eta_0 > 0 $为一常数, 定义

$ \begin{equation} \bar {\bf x}\triangleq (e+| {\bf x}|^2)^{1/2}\ln^{1+\eta_0}(e+| {\bf x}|^2). \end{equation} $

$ L^r = L^r( {\mathbb{R}}^2), \ W^{s, r} = W^{s, r}( {\mathbb{R}}^2), \ H^s = W^{s, 2}( {\mathbb{R}}^2), $其中$ 1\leq r\leq \infty $.对于任意的常数$ q>2 $以及$ a>1 $, 假设初值$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $满足

$ \begin{equation} \left\{ \begin{array}{lll} \varrho_0\geq0, \ \varrho_0\bar {\bf x}^a\in L^1\cap H^1\cap W^{1, q}, \ {\bf H}_0 \bar {\bf x}^a \in H^1\cap W^{1, q}, \\ \nabla {\bf u}_0\in L^2, \ \sqrt{ \varrho_0} {\bf u}_0\in L^2, \ {{\rm{div }}} {\bf u}_0 = {{\rm{div }}} {\bf H}_0 = 0, \end{array} \right. \end{equation} $

则存在$ T_0>0 $使得方程(1.2)–(1.4)在$ {\mathbb{R}}^2\times (0, T_0) $上有唯一的强解$ ( \varrho, {\bf u}, \pi, {\bf H}) $满足$ {{\rm{div }}} {\bf u} = 0 $以及$ {{\rm{div }}} {\bf H} = 0 $, 并使得

$ \begin{equation} \left\{ \begin{array}{lll} \varrho\in C([0, T_0]; L^1\cap H^1\cap W^{1, q}), \ \varrho\bar {\bf x}^a\in L^\infty (0, T_0; L^1\cap H^1\cap W^{1, q}), \\ {\bf H}\in C([0, T_0]; L^2\cap H^1\cap W^{1, q}), \ {\bf H}\bar {\bf x}^a\in L^\infty(0, T_0; H^1\cap W^{1, q}), \\ \sqrt \varrho {\bf u}, \ \nabla {\bf u}, \ \sqrt{t}\sqrt \varrho {\bf u}_t, \ \sqrt{t} \nabla\pi, \ \sqrt t \nabla^2 {\bf u}\in L^\infty (0, T_0; L^2), \\ \nabla {\bf u}\in L^2(0, T_0; H^1)\cap L^{(q+1)/q}(0, T_0; W^{1, q}), \ \sqrt{t} \nabla {\bf u}\in L^2(0, T_0; W^{1, q}), \\ \nabla\pi\in L^2(0, T_0; L^2)\cap L^{(q+1)/q}(0, T_0; L^q), \\ \sqrt \varrho {\bf u}_t, \sqrt t \nabla {\bf u}_t\in L^2( {\mathbb{R}}^2\times (0, T_0)), \end{array} \right. \end{equation} $

以及对适当的常数$ N>0 $$ B_N\triangleq\{ {\bf x}\in {\mathbb{R}}^2|| {\bf x}|<N\} $

$ \begin{equation} \inf\limits_{0\leq t\leq T_0}\int_{B_N} \varrho(t, {\bf x}){\rm d} {\bf x}\geq \frac14\int_{ {\mathbb{R}}^2} \varrho_0( {\bf x}){\rm d} {\bf x}. \end{equation} $

进一步, 若初值$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $满足额外的正则性和兼容性条件, 则定理1.1中得到的局部解$ ( \varrho, {\bf u}, \pi, {\bf H}) $就是经典解.

定理1.2  除了方程(1.6)的初值假设外, 进一步假设初值满足

$ \begin{equation} \nabla^2 \varrho_0, \ \nabla^2 {\bf H}_0\in L^2\cap L^q, \quad\bar {\bf x}^{\delta_0} \nabla^2 \varrho_0, \ \bar {\bf x}^{\delta_0} \nabla^2 {\bf H}_0, \ \nabla^2 {\bf u}_0\in L^2, \end{equation} $

其中$ \delta_0\in (0, 1) $.$ {\bf g}\in L^2 $时, 若方程在初始时刻满足下面兼容性条件

$ \begin{equation} -\mu\triangle {\bf u}_0+ \nabla \pi_0-( \nabla\times {\bf H}_0)\times {\bf H}_0 = \varrho_0^{1/2}{\bf g}, \end{equation} $

则方程组存在唯一的局部强解$ ( \varrho, {\bf u}, \pi, {\bf H}) $, 除了满足(1.7)和(1.8)式之外, 还满足

$ \begin{equation} \left\{ \begin{array}{lll} \nabla^2 \varrho, \ \nabla^2 {\bf H}\in C([0, T_0]; L^2\cap L^q), \ \bar {\bf x}^{\delta_0} \nabla^2 \varrho, \ \bar {\bf x}^{\delta_0} \nabla^2 {\bf H} \in L^\infty(0, T_0; L^2), \\ \nabla^2 {\bf u}, \ \sqrt \varrho {\bf u}_t, \ \sqrt t \nabla {\bf u}_t, \ t\sqrt \varrho {\bf u}_{tt}, \ t \nabla^2 {\bf u}_t\in L^\infty(0, T_0; L^2), \\ \nabla \pi, \ \sqrt t\pi_t, \ t\pi_t\in L^\infty(0, T_0; L^2), \nabla {\bf u}_t, \ t \nabla {\bf u}_{tt}\in L^2(0, T_0; L^2), \\ t \nabla^3 {\bf u}, \ t \nabla^2\pi \in L^\infty(0, T_0; L^2\cap L^q), t \nabla^2( \varrho {\bf u})\in L^\infty(0, T_0; L^{(q+2)/2}). \end{array} \right. \end{equation} $

就我们的存在性结果而言, 当$ {\bf H} = 0 $时其实定理1.1的结果与吕博强[27]的结果类似.然而对于全局存在性, 像非齐次Navier-Stokes方程[29]和带磁扩散的流体方程[17, 28], 只有给出比局部存在性更多的初值假设, 才可以得到全局解的存在性, 如文献[25, 31].该文受到文献[6, 29, 34]的启发, 当初值满足(1.6)式, (1.9)式以及兼容性条件(1.10)时, 得到了仅依赖于磁场$ {\bf H} $的爆破准则.

定理1.3  假设初值$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $满足(1.6)式, (1.9)式以及兼容性条件(1.10).令$ ( \varrho, {\bf u}, \pi, {\bf H}) $是方程组(1.2)–(1.4)的局部强解.若$ 0<T^*<+\infty $是局部解的最大存在区间, 则对任意的$ r>2 $

$ \begin{equation} \limsup\limits_{T\rightarrow T^*}\left(\| {\bf H}\|_{L^\infty(0, T^*; L^\infty ( {\mathbb{R}}^2))}+\| \nabla {\bf H}\| _{L^1(0, T_*; L^r( {\mathbb{R}}^2)}\right) = \infty. \end{equation} $

讨论零磁扩散磁流体方程组主要有如下难点:首先对于定理1.1和定理1.2, 在全空间情形没有紧致性, $ {\bf u} $$ L^p $范数无法被$ \sqrt \varrho {\bf u} $$ \nabla {\bf u} $$ L^2 $范数控制.因此, Cho等人[7-9]的方法无法直接应用于该文情形.同时, 速度场和磁场的强耦合作用导致很强的非线性, 给该问题的研究带来很大的困难.因此, 像文献[23-24, 26]中一样, 对密度和磁场给出一些带权估计.另一方面, 磁扩散项的缺失为高阶导数能量估计带来一些麻烦.令人欣慰的是二维情形, 由于$ {{\rm{div }}} {\bf H} = 0 $, 可以假设存在一个势函数$ \phi $使得$ {\bf H} = (\partial_2 \phi, -\partial_1 \phi) $, 则方程$ (1.2)_3 $可以改写为$ \phi_t+ {\bf u}\cdot\nabla\phi = 0, $很显然, 它具有和方程$ (1.2)_1 $相类似的结构.因此, 估计磁场正则性的方法同样适用于密度的正则性估计.

最后, 值得一提的是该文中初值条件的假设比文献[5, 12]的更弱, 而该文中爆破的结论与文献[6]相比更好.

该文后面的内容作如下安排:第2部分中, 给出了证明过程中会用到的基本引理和不等式; 第3, 4部分, 分别给出了局部强解和经典解存在性所需要的先验估计; 定理1.1–1.3的证明则由第5部分给出.

2 预备知识

下面给出该文中会用到的一系列引理和估计.当初值严格远离真空时候, 有界球上零磁扩散磁流体方程组的局部存在性定理可由下面引理给出[7-9].

引理2.1  令$ B_R = \{ {\bf x}\in {\mathbb{R}}^2|| {\bf x}|<R\} $表示半径小于$ R>0 $的有界球, 设磁流体方程组的初值$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $满足

$ \begin{equation} ( \varrho_0, {\bf u}_0, {\bf H}_0)\in H^3(B_R), \ \ {{\rm{div }}} {\bf u}_0 = 0, {{\rm{div }}} {\bf H}_0 = 0, \ \inf\limits_{ {\bf x}\in B_R} \varrho_0( {\bf x})>0, \end{equation} $

则存在一个适当小的$ T_R>0 $, 下面的初边值问题

$ \begin{equation} \left\{ \begin{array}{lll} \varrho_t+ {{\rm{div }}}( \varrho {\bf u}) = 0, \\ \varrho {\bf u}_t+ \varrho( {\bf u}\cdot \nabla) {\bf u}+ \nabla \pi = \mu\triangle {\bf u}+(\nabla\times {\bf H})\times {\bf H}, \\ {\bf H}_t+( {\bf u}\cdot \nabla) {\bf H} = ( {\bf H}\cdot \nabla) {\bf u}, \\ {{\rm{div }}} {\bf u} = 0, \quad {{\rm{div }}} {\bf H} = 0, \\ {\bf u} = 0, {\bf x}\in \partial B_R, \quad t>0, \\ ( \varrho, {\bf u}, {\bf H})(0, {\bf x}) = ( \varrho_0, {\bf u}_0, {\bf H}_0)( {\bf x}), \quad {\bf x}\in B_R \end{array} \right. \end{equation} $

$ B_R\times [0, T_R] $上具有唯一的局部解$ ( \varrho, {\bf u}, \pi, {\bf H}) $, 并且满足正则性

$ \begin{equation} \left\{ \begin{array}{lll} \varrho, {\bf H}\in C([0, T_R]; H^3), \ {\bf u}\in C([0, T_R]; H^3)\cap L^2(0, T_R; H^4), \\ \pi\in C([0, T_R]; H^2)\cap L^2(0, T_R; H^3), \end{array} \right. \end{equation} $

这里$ L^2 = L^2(B_R) $, 并且$ H^k = H^k(B_R) $, $ k $为正整数.

$ \Omega = {\mathbb{R}}^2 $$ \Omega = B_R (R \geq 1) $时, 下面关于$ \tilde D^{1, 2} (\Omega) \triangleq \{v\in H_{\rm loc}^1(\Omega)| \nabla v\in L^2(\Omega)\} $空间中元素的带权估计在该文的后面的证明中起到关键作用[16, 24].

引理2.2  若$ \bar{{\bf x}} $是(1.5)式中定义的量, $ \Omega = {\mathbb{R}}^2 $$ \Omega = B_R, R\geq 1 $.假设$ \varrho\in L^1(\Omega)\cap L^\infty(\Omega) $是一个非负函数, 并且对正的常数$ M_1 $, $ M_2 $满足

$ \begin{equation} M_1\leq\int_{B_{N_1}} \varrho {\rm d} {\bf x}, \quad \| \varrho\|_{ L^1(\Omega)\cap L^\infty(\Omega)}\leq M_2, \end{equation} $

其中$ N_1\geq1 $$ B_{N_1}\subset\Omega $.则对任意的$ \varepsilon>0 $以及$ \eta>0 $, 存在依赖于$ \varepsilon, \eta, M_1, M_2, N_1 $$ \eta_0 $正的常数$ C $, 使得对任意的$ {\bf v}\in \tilde D^{1, 2}( \Omega) $

$ \begin{equation} \|{\bf v}\bar {\bf x}^{-\eta}\|_{L^{(2+\varepsilon)/\tilde{\eta}}(\Omega)} \leq C\|\sqrt \varrho{\bf v}\|_{L^2(\Omega)}+C\| \nabla {\bf v}\|_{L^2(\Omega)}, \end{equation} $

$ \tilde{\eta} = \min\{1, \eta\} $.

考虑如下的Stokes系统

$ \begin{equation} \left\{ \begin{array}{lll} -\triangle {\bf u}+\nabla \pi = F, & \mbox{于 }\ B_R \ \mbox{上}, \\ \nabla\cdot u = 0, & \mbox{于 }\ B_R \ \mbox{上} \\ {\bf u} = 0, & \mbox{于 }\ \partial B_R \ \mbox{上}. \end{array} \right. \end{equation} $

则对上述的Stokes系统有$ L^p $有界估计[15, Theorem Ⅳ.6.1].

引理2.3  设$ {\bf u}\in W_0^{1, q}(B_R) $是方程(2.6)的一个弱解, 其中$ q> 1 $.若对$ k\geq 0 $, $ F\in W^{k, q}(B_R) $, 则有$ {\bf u}\in W^{k+2, q}(B_R) $以及

$ \begin{equation} \|\nabla^{k+2} {\bf u}\|_{L^{q}(B_R)}+\|\nabla^{k+1}\pi\|_{L^q}\leq C\| F\|_{W^{k, q}(B_R)}, \end{equation} $

这里$ C $不依赖于$ R $.

另外, 关于有界均振空间($ BMO( {\mathbb{R}}^2) $)以及哈代空间($ \mathcal{H}^1( {\mathbb{R}}^2) $), 该文需要用到如下的重要引理[11].

引理2.4  存在常数$ C > 0 $,

● 对任意的$ {\bf E}\in L^2( {\mathbb{R}}^2) $以及$ {\bf B}\in L^2( {\mathbb{R}}^2) $, 有

$ \|\mathbf{E} \cdot \mathbf{B}\|_{\mathcal{H}^{\infty}\left(\mathbb{R}^{\in}\right)} \leq C\|\mathbf{E}\|_{L^{2}\left(\mathbb{R}^{2}\right)}\|\mathbf{B}\|_{L^{2}\left(\mathbb{R}^{2}\right)}, $

● 对任意的$ {\bf v}\in \mathcal{D}^1( {\mathbb{R}}^2) $, 有

$ \begin{equation} \|{\bf v}\|_{BMO}\leq C\| \nabla{\bf v}\|_{L^2( {\mathbb{R}}^2)}, \end{equation} $

3 先验估计(Ⅰ)

从这部分开始, 将给出一些证明局部适定性的先验估计.对任意的$ p\in[1, \infty] $以及$ k\geq0 $, 定义

$ \begin{equation} \phi(t)\triangleq 1+\|\sqrt \varrho {\bf u}\|_{L^2}+\| \nabla {\bf u}\|_{L^2}+\| {\bf H}\|_{L^2} +\| {\bf H}\bar {\bf x}^a\|_{H^1\cap W^{1, q}}+\| \varrho\bar {\bf x}^a\|_{L^1\cap H^1\cap W^{1, q}}. \end{equation} $

该部分的目的是得到关于$ \phi(t) $的先验估计.

命题3.1  当$ R>4, N_0\geq 4 $, 设初值$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $是光滑的并且满足2.1式以及

$ \begin{equation} \frac12\leq \int_{B_{N_0}} \varrho_0( {\bf x}){\rm d} {\bf x}\leq \int_{B_R} \varrho_0( {\bf x}){\rm d} {\bf x}\leq \frac32. \end{equation} $

$ ( \varrho, {\bf u}, \pi, {\bf H}) $是引理2.1中初边值问题2.2在$ B_R\times (0, T_R] $上的解.则存在依赖于$ \mu, q, a, \eta_0, N_0 $$ C_0 $的常数$ T_0 > 0 $以及$ M > 0 $使得

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}\phi(t)+\int_0^{T_0}\left(\| \nabla^2 {\bf u}\|_{L^q} ^{(q+1)/q}+t\| \nabla^2 {\bf u}\|_{L^q}^2+\| \nabla^2 {\bf u}\|_{L^2}^2\right){\rm d}t\leq M \end{equation} $

成立, 其中$ C_0 = \|\sqrt{ \varrho_0} {\bf u}_0\|_{L^2}+\| \nabla {\bf u}_0\|_{L^2}+\| {\bf H}_0\|_{L^2} +\| {\bf H}_0\bar {\bf x}^a\|_{H^1\cap W^{1, q}}+\| \varrho_0\bar {\bf x}^a\| _{L^1\cap H^1\cap W^{1, q}}\;. $命题3.1是一系列先验估计封闭的结果, 它的证明放在该部分的最后.首先, 需要对方程中未知函数$ ( \varrho, {\bf u}, \pi, {\bf H}) $以及$ \nabla {\bf u} $给出$ L^2 $估计.

引理3.1  令$ ( \varrho, {\bf u}, \pi, {\bf H}) $是初边值问题2.2的光滑解.则存在常数$ \alpha = \alpha( q)>1 $以及$ T_1 = T_1(C_0, N_0)>0 $使得对任意的$ t\in (0, T_1] $, 有

$ \begin{equation} \sup\limits_{0\leq s\leq t}\left(\| \nabla {\bf u}\|_{L^2}^2+\| {\bf H}\|_{L^2}^2+ \|\sqrt \varrho {\bf u}\|_{L^2}^2 \right) +\int_0^t\left(\| \nabla {\bf u}\|_{L^2}^2+\|\sqrt \varrho {\bf u}_s\|_{L^2}^2\right){\rm d}s \leq C+C\int_0^t\phi^\alpha(s) {\rm d}s. \end{equation} $

  通过对方程进行基本能量估计可得

$ \begin{equation} \sup\limits_{0\leq s\leq t}\left(\|\sqrt \varrho {\bf u}\|_{L^2}^2+\| {\bf H}\|_{L^2}^2 \right) +\int_0^t\| \nabla {\bf u}\|_{L^2}^2{\rm d}s\leq C, \qquad \sup\limits_{0\le s\le t}\| \varrho\|_{L^1\cap L^\infty}\le C. \end{equation} $

取具有紧支集的光滑函数$ \varphi_N\in C_0^\infty(B_R) $, 其中$ N>1 $, 满足

$ \begin{equation} 0\leq \varphi_N\leq 1, \ \varphi_N( {\bf x}) = 1, \ {\rm if}\ | {\bf x}|\leq N/2, \ \ | \nabla^k \varphi_N|\leq CN^{-k} (k = 1, 2), \end{equation} $

则由(3.1)式, (3.5)式和$ \int \varrho {\rm d} {\bf x} = \int \varrho_0 {\rm d} {\bf x}, $可推出

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\int \varrho \varphi_{2N_0}{\rm d} {\bf x}& = &\int \varrho {\bf u}\cdot \nabla \varphi_{2N_0}{\rm d} {\bf x} \geq -CN_0^{-1}\left(\int \varrho {\rm d} {\bf x}\right)^{1/2}\left( \int \varrho| {\bf u}|^2 \right)^{1/2} \\ &\geq& - \tilde C(C_0, N_0), \end{eqnarray} $

对不等式(3.7)在$ (0, T_1) $上两边积分, 易得

$ \begin{equation} \inf\limits_{0\leq t\leq T_1}\int_{B_{2N_0}} \varrho {\rm d} {\bf x}\geq \inf\limits_{0\leq t\leq T_1} \int \varrho \varphi_{2N_0}{\rm d} {\bf x}\geq \int \varrho_0 \varphi_{2N_0}{\rm d} {\bf x}- \tilde CT_1\geq1/4, \end{equation} $

$ T_1\triangleq\min\{1, (4 \tilde C)^{-1}\} $.从下文开始, 总是假设$ t\leq T_1 $.结合(2.5), (3.5)以及(3.8)式, 对任意的$ \varepsilon>0 $, $ \eta>0 $, $ {\bf v}\in \tilde D^{1, 2}(B_R) $满足

$ \begin{equation} \|{\bf v}\bar {\bf x}^{-\eta}\|_{L^{(2+ \varepsilon)/ \tilde\eta}}^2\leq C( \varepsilon, \eta)\|\sqrt \varrho{\bf v}\|_{L^2}^2+C( \varepsilon, \eta)\| \nabla{\bf v}\|_{L^2}^2, \end{equation} $

这里$ \tilde\eta = \min\{1, \eta\} $.进一步, 由(3.9)式可得

$ \begin{equation} \| \varrho^\eta {\bf u}\|_{L^{(2+ \varepsilon)/ \tilde\eta}}+\| {\bf u}\bar {\bf x}^{-\eta}\| _{L^{(2+ \varepsilon)/ \tilde\eta}}\leq C( \varepsilon, \eta)\phi^{1+\eta}(t). \end{equation} $

接下来, 对方程(2.2)$ _2 $两边乘以$ {\bf u}_t $, 并积分.及分部积分可得

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\left(\mu\| \nabla {\bf u}\|_{L^2}^2\right)+\|\sqrt \varrho {\bf u}_t\|_{L^2}^2 \leq C\int \varrho| {\bf u}|^2| \nabla {\bf u}|^2{\rm d} {\bf x}+2\int ( {\bf H}\cdot \nabla) {\bf H} \cdot {\bf u}_t {\rm d} {\bf x}. \end{eqnarray} $

由Gagliardo-Nirenberg不等式以及$ H^{2} $范数的定义, 有

$ \begin{equation} \| \nabla {\bf u}\|_{L^p}\leq C\| \nabla {\bf u}\|_{L^2}^{2/p}\| \nabla {\bf u}\|_{H^1}^{1-2/p} \leq C\phi(t)+C\phi(t)\| \nabla^2 {\bf u}\|_{L^2}^{1-2/p}, \end{equation} $

结合(3.10)式, 对$ \eta>0 $$ \tilde\eta = \min\{1, \eta\} $, 有

$ \begin{eqnarray} \int \varrho^\eta| {\bf u}|^2| \nabla {\bf u}|^2{\rm d} {\bf x}&\leq & C\| \varrho^{\eta/2} {\bf u}\|_{L^{8/ \tilde\eta} }^2\| \nabla {\bf u}\|_{L^{8/(4- \tilde\eta)}}^2 \\ &\leq& C(\eta)\phi^{4+2\eta}(t)\left(1+\| \nabla^2 {\bf u}\|_{L^2}^{ \tilde\eta/2} \right) \\ &\leq&C\phi^{\alpha(\eta)}(t)+ \varepsilon\| \nabla^2 {\bf u}\|_{L^2}^2. \end{eqnarray} $

关于$ x $分部积分, 再结合方程(2.2)$ _3 $, 方程(3.11)右端第二项可得

$ \begin{eqnarray} 2\int ( {\bf H}\cdot \nabla) {\bf H} \cdot {\bf u}_t {\rm d} {\bf x}& = &-2\frac{\rm d}{{\rm d}t}\int ( {\bf H}\cdot \nabla ) {\bf u}\cdot {\bf H} {\rm d} {\bf x}+2\int ( {\bf H}_t\cdot \nabla) {\bf u}\cdot {\bf H} {\rm d} {\bf x}\\ &&+2\int ( {\bf H}\cdot \nabla ) {\bf u}\cdot {\bf H}_t {\rm d} {\bf x} \\ & = &-2\frac{\rm d}{{\rm d}t}\int ( {\bf H}\cdot \nabla ) {\bf u}\cdot {\bf H} {\rm d} {\bf x}+2\int (( {\bf H}\cdot \nabla) {\bf u}\cdot \nabla) {\bf u}\cdot {\bf H} {\rm d} {\bf x} \\ & &-2\int (( {\bf u}\cdot \nabla) {\bf H}\cdot \nabla) {\bf u}\cdot {\bf H} {\rm d} {\bf x} \\ & &+2\int ( {\bf H}\cdot \nabla ) {\bf u}\cdot( {\bf H}\cdot \nabla) {\bf u} {\rm d} {\bf x}-2\int ( {\bf H}\cdot \nabla ) {\bf u}\cdot( {\bf u}\cdot \nabla) {\bf H} {\rm d} {\bf x}. \end{eqnarray} $

上式第二, 四项可以得到

上式三, 五项, 由Hölder不等式以及Young不等式可以得到

把上面两部分的估计代入等式(3.14), 得到

$ \begin{equation} 2\int ( {\bf H}\cdot \nabla) {\bf H} \cdot {\bf u}_t {\rm d} {\bf x}\leq-2\frac{\rm d}{{\rm d}t}\int ( {\bf H}\cdot \nabla ) {\bf u}\cdot {\bf H} {\rm d} {\bf x} +C\phi^\alpha(t)+ \varepsilon\phi^{-1}(t)\| \nabla^2 {\bf u}\|_{L^2}^2. \end{equation} $

结合(3.13)和(3.15)式, 有

$ \begin{equation} \frac{\rm d}{{\rm d}t}\mu\| \nabla {\bf u}\|_{L^2}^2 +2\frac{\rm d}{{\rm d}t}\int \left( ( {\bf H}\cdot \nabla ) {\bf u}\cdot {\bf H}\right) {\rm d} {\bf x}+\|\sqrt \varrho {\bf u}_t\|_{L^2}^2 \leq C\phi^\alpha(t)+4 \varepsilon\phi^{-1}(t)\| \nabla^2 {\bf u}\|_{L^2}^2. \end{equation} $

因此, 只需估计(3.16)式右端最后一项即可.从而设不等式(2.7)的右边所有项$ F = \varrho {\bf u}_t+ \varrho {\bf u}\cdot \nabla {\bf u}+ {\bf H}\cdot \nabla {\bf H} $, 取$ p\in [2, q] $, 有

$ \begin{eqnarray} \| \nabla^2 {\bf u}\|_{L^p}\leq C\left(\| \varrho {\bf u}_t\|_{L^p}+\| \varrho {\bf u}\cdot \nabla {\bf u}\|_{L^p}+\|| {\bf H}|| \nabla {\bf H}|\|_{L^p}\right). \end{eqnarray} $

结合不等式(3.17), (3.12)和(3.13), 可得

$ \begin{eqnarray} \| \nabla^2 {\bf u}\|_{L^2}&\leq& C\phi^{1/2}(t)\|\sqrt \varrho {\bf u}_t\|_{L^2} +C\| \varrho {\bf u}\cdot \nabla {\bf u}\|_{L^2} +C\phi^\alpha (t)\\ &\leq &C\phi^{1/2}(t)\|\sqrt \varrho {\bf u}_t\|_{L^2}+\frac12\| \nabla^2 {\bf u}\|_{L^2} +C\phi^\alpha (t). \end{eqnarray} $

将估计(3.18)代入(3.16)式, 对得到的不等式在$ (0, t) $上积分, 取$ \varepsilon $适当小, 从而有

$ \begin{eqnarray} \frac\mu2\| \nabla {\bf u}\|_{L^2}^2+\int_0^t \|\sqrt \varrho {\bf u}_s\|_{L^2}^2{\rm d}s \leq C+C\| {\bf H}\|_{L^4}^4+C\int_0^t\phi^\alpha(s){\rm d}s, \end{eqnarray} $

而对于$ \int \left( ( {\bf H}\cdot \nabla ) {\bf u}\cdot {\bf H}\right) {\rm d} {\bf x} $的估计用到如下不等式

至于(3.19)式右端第二项的估计, 对(2.2)$ _3 $式两边乘以$ 4| {\bf H}|^2 {\bf H} $, 然后在$ B_R $上积分

$ t $$ (0, t) $积分, 可推出

$ \begin{equation} \| {\bf H}\|_{L^4}^4\leq C+\int_0^t\phi^\alpha(s){\rm d}s. \end{equation} $

把(3.20)式代入(3.19)式, 再结合(3.5)式, 即可得(3.4)式.证毕.

引理3.2  设$ ( \varrho, {\bf u}, \pi, {\bf H}) $以及$ T_1 $为引理3.1中相关的量.则对任意$ t\in (0, T_1] $, 有

$ \begin{equation} \sup\limits_{0\leq s\leq t}s\|\sqrt \varrho {\bf u}_t\|_{L^2}^2+\int_0^ts\| \nabla {\bf u}_s\| _{L^2}^2{\rm d}s\leq C\exp\left(C\int_0^t\phi^\alpha(s){\rm d}s\right). \end{equation} $

  对方程(2.2)$ _2 $两端关于$ t $求导

$ \begin{equation} \varrho {\bf u}_{tt}+ \varrho {\bf u}\cdot \nabla {\bf u}_t-\mu\triangle {\bf u}_t = - \varrho_t( {\bf u}_t+ {\bf u}\cdot \nabla {\bf u})- \varrho {\bf u}_t\cdot \nabla {\bf u}- \nabla \pi_t+ {\bf H}_t\cdot \nabla {\bf H}+ {\bf H}\cdot \nabla {\bf H}_t. \end{equation} $

对上式两端乘以$ {\bf u}_t $并在$ B_R $上积分, 有

$ \begin{eqnarray} &&\frac12\frac{\rm d}{{\rm d}t}\int \varrho| {\bf u}_t|^2{\rm d} {\bf x}+\mu\int| \nabla {\bf u}_t|^2{\rm d} {\bf x} \\ & = &-2\int \varrho {\bf u}\cdot \nabla {\bf u}_t\cdot {\bf u}_t {\rm d} {\bf x}-\int \varrho {\bf u}\cdot \nabla( {\bf u}\cdot \nabla {\bf u}\cdot {\bf u}_t){\rm d} {\bf x} \\ &&-\int \varrho {\bf u}_t\cdot \nabla {\bf u}\cdot {\bf u}_t {\rm d} {\bf x}-\int( {\bf H}\otimes {\bf H})_t: \nabla {\bf u}_t{\rm d} {\bf x} \\ &\leq &C\int \varrho| {\bf u}|| {\bf u}_t|\left(| \nabla {\bf u}_t|+| \nabla {\bf u}|^2+| {\bf u}|| \nabla^2 {\bf u} |\right){\rm d} {\bf x}+C\int \varrho| {\bf u}|^2| \nabla {\bf u}|| \nabla {\bf u}_t|{\rm d} {\bf x} \\ &&+C\int \varrho| {\bf u}_t|^2| \nabla {\bf u}|{\rm d} {\bf x}+C \int | {\bf H}|| {\bf H}_t|| \nabla {\bf u}_t|{\rm d} {\bf x}. \end{eqnarray} $

和引理3.1一样, 下面对上式右端进行逐项估.首先根据(3.1), (3.5), (3.9), (3.10)和(3.12)式, 对任意的$ \varepsilon\in (0, 1) $, (3.23)式右端第一项和第二项的类似部分可以做如下估计

$ \begin{eqnarray} &&\int \varrho| {\bf u}|| {\bf u}_t|\left(| \nabla {\bf u}_t|+| \nabla {\bf u}|^2+| {\bf u}|| \nabla^2 {\bf u} |\right){\rm d} {\bf x} \\ & \leq &C\|\sqrt \varrho {\bf u}\|_{L^6}\|\sqrt \varrho {\bf u}_t\|_{L^2}^{1/2} \|\sqrt \varrho {\bf u}_t\|_{L^6}^{1/2}\left(\| \nabla {\bf u}_t\|_{L^2} +\| \nabla {\bf u}\|_{L^4}^2\right) \\ &&+C\| \varrho^{1/4} {\bf u}\|_{L^{12}}^2\|\sqrt \varrho {\bf u}_t\|_{L^2}^{1/2} \|\sqrt \varrho {\bf u}_t\|_{L^6}^{1/2}\| \nabla^2 {\bf u}\|_{L^2} \\ &\leq &C\phi^\alpha(t)\|\sqrt \varrho {\bf u}_t\|_{L^2}^{1/2}\left( \|\sqrt \varrho {\bf u}_t\|_{L^2}^{1/2}+ \| \nabla {\bf u}_t\|_{L^2}^{1/2}\right) \left(\| \nabla {\bf u}_t\|_{L^2}+\| \nabla^2 {\bf u}\|_{L^2}+\phi(t)\right) \\ &\leq& \varepsilon\| \nabla {\bf u}_t\|_{L^2}^2+C\phi^\alpha(t)\left( \| \nabla^2 {\bf u}\|_{L^2}^2+\|\sqrt \varrho {\bf u}_t\|_{L^2}^2+1\right). \end{eqnarray} $

对于(3.23)式右端第二项的剩下部分, 利用Hölder不等式, (3.10)式以及(3.12)式可得

$ \begin{eqnarray} \int \varrho| {\bf u}|^2| \nabla {\bf u}|| \nabla {\bf u}_t|{\rm d} {\bf x}&\leq & C\|\sqrt \varrho {\bf u}\|_{L^8}^2\| \nabla {\bf u}\|_{L^4}\| \nabla {\bf u}_t\|_{L^2}\\ & \leq & \varepsilon\| \nabla {\bf u}_t\|_{L^2}^2+C\left(\phi^\alpha (t)+\| \nabla^2 {\bf u}\|_{L^2}^2 \right). \end{eqnarray} $

同样地, 利用Hölder不等式以及(3.9)式可得

$ \begin{eqnarray} \int \varrho| {\bf u}_t|^2| \nabla {\bf u}|{\rm d} {\bf x}&\leq &\| \nabla {\bf u}\|_{L^2}\|\sqrt \varrho {\bf u}_t\|_{L^6}^{3/2} \|\sqrt \varrho {\bf u}_t\|_{L^2}^{1/2} \\ & \leq & \varepsilon\| \nabla {\bf u}_t\|_{L^2}^2+C\phi^\alpha(t)\|\sqrt \varrho {\bf u}_t\|_{L^2}^2. \end{eqnarray} $

最后, 借助(2.2)$ _3 $和(3.10)式, 可知

$ \begin{eqnarray} \int | {\bf H}|| {\bf H}_t|| \nabla {\bf u}_t|{\rm d} {\bf x} &\leq &C\int \left(| {\bf H}|| \nabla {\bf u}|+| \nabla {\bf H}|| {\bf u}|\right)| \nabla {\bf u}_t|{\rm d} {\bf x} \\ & \leq &C\left(\| {\bf H}\|_{L^\infty}\| \nabla {\bf u}\|_{L^2}+\| {\bf H}\bar {\bf x}^a\|_{W^{1, q}} \| {\bf u}\bar {\bf x}^{-a}\|_{L^{2q/(q-2)}}\right)\| \nabla {\bf u}_t\|_{L^2} \\ &\leq & \varepsilon\| \nabla {\bf u}_t\|_{L^2}^2+C\phi^\alpha(t). \end{eqnarray} $

对上述所有估计进行汇总, 并令$ \varepsilon $适当小, 利用估计(3.18), 有

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\int \varrho| {\bf u}_t|^2{\rm d} {\bf x}+\mu\int| \nabla {\bf u}_t|^2{\rm d} {\bf x} & \leq &C\phi^\alpha(t)\left(1+\|\sqrt \varrho {\bf u}_t\|_{L^2}^2 +\| \nabla^2 {\bf u}\|_{L^2}^2 \right) \\ & \leq &C\phi^\alpha(t)\|\sqrt \varrho {\bf u}_t\|_{L^2}^2+C\phi^\alpha(t), \end{eqnarray} $

因此, 利用Gronwall不等式就可以得到(3.21).证毕.

引理3.3  在引理3.1中$ ( \varrho, {\bf u}, \pi, {\bf H}) $以及$ T_1 $的假设下.对任意的$ t\in (0, T_1] $, 有

$ \begin{equation} \sup\limits_{0\leq s\leq t}\left(\| \varrho\bar {\bf x}^a\|_{L^1\cap H^1\cap W^{1, q}}+\| {\bf H}\bar {\bf x}^a\|_{H^1\cap W^{1, q}}\right) \leq \exp\left(C\exp\left(C\int_0^t\phi^\alpha(s){\rm d}s\right)\right). \end{equation} $

  对方程(2.2)$ _1 $两边同时乘以$ \bar {\bf x}^a $, 对任意的$ \bf u\in \tilde D^{1, 2}(B_R) $, 由(3.9)式, 有

这表明

$ \begin{equation} \sup\limits_{0\leq s\leq t}\| \varrho\bar {\bf x}^a\|_{L^1}\leq C\left(1+ \int_0^t\phi^\alpha(s){\rm d}s\right). \end{equation} $

至于$ \varrho\bar {\bf x}^a $的高阶估计类似于下面的$ {\bf H}\bar {\bf x}^a $估计.首先, 对$ 0<\delta<1 $根据Sobolev不等式以及(3.10)式, 有

$ \begin{eqnarray} \| {\bf u}\bar {\bf x}^{-\delta}\|_{L^\infty}&\leq &C\left(\| {\bf u}\bar {\bf x}^{-\delta} \|_{L^{4/\delta}}+\| \nabla( {\bf u}\bar {\bf x}^{-\delta})\|_{L^3} \right) \\ &\leq& C\left(\| {\bf u}\bar {\bf x}^{-\delta} \|_{L^{4/\delta}}+ \| \nabla {\bf u}\|_{L^3}+\| {\bf u}\bar {\bf x}^{-\delta} \|_{L^{4/\delta}}\|\bar {\bf x}^{-1} \nabla\bar {\bf x}\|_{L^{12/(4-3\delta)}} \right) \\ &\leq &C\left(\phi^\alpha (t) +\| \nabla^2 {\bf u}\|_{L^2}\right). \end{eqnarray} $

$ \tilde {\bf H}\triangleq {\bf H}\bar {\bf x}^a $, 则(2.2)$ _3 $式可改写为

$ \begin{equation} \tilde {\bf H}_t+ {\bf u}\cdot \nabla \tilde {\bf H}-a {\bf u}\cdot \nabla\ln\bar {\bf x}\cdot \tilde {\bf H} = \tilde {\bf H}\cdot \nabla {\bf u}. \end{equation} $

由(3.31)式的估计以及Gagliardo-Nirenberg不等式, 上述等式容易得到

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\| \tilde {\bf H}\|_{L^2} &\leq &C\left(\| \nabla {\bf u}\|_{L^\infty} +\| {\bf u}\cdot \nabla\ln\bar {\bf x}\|_{L^\infty}\right)\| \tilde {\bf H}\|_{L^2}\\ &\leq &C\left(\phi^\alpha(t)+\| \nabla^2 {\bf u}\|_{L^2\cap W^{1, q}}\right)\| \tilde {\bf H}\|_{L^2}. \end{eqnarray} $

$ p\in [2, q] $, 进一步可以得到

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\| \nabla \tilde {\bf H}\|_{L^p} &\leq & C\left( 1+\| \nabla {\bf u}\|_{L^\infty} +\| {\bf u}\cdot \nabla\ln\bar {\bf x}\|_{L^\infty}\right)\| \nabla \tilde {\bf H}\|_{L^p} \\ &&+C\left(\|| \nabla {\bf u}|| \nabla\ln\bar {\bf x}|\|_{L^p}+\|| {\bf u}|| \nabla^2\ln\bar {\bf x}|\| _{L^p} +\| \nabla^2 {\bf u}\|_{L^p}\right)\| \tilde {\bf H}\|_{L^\infty} \\ &\leq &C\left(\phi^\alpha(t)+\| \nabla {\bf u}\|_{L^2\cap W^{1, q}}\right)\| \nabla \tilde {\bf H}\|_{L^p} \\ &&+C\left(\| \nabla {\bf u}\|_{L^p}+\| {\bf u}\bar {\bf x}^{-1/4}\|_{L^\infty} \|\bar {\bf x}^{-3/2}\|_{L^p}+\| \nabla^2 {\bf u}\|_{L^p}\right)\| \tilde {\bf H}\|_{L^\infty} \\ &\leq& C\left(\phi^\alpha(t)+\| \nabla^2 {\bf u}\|_{L^2\cap L^p}\right) \left(1+\| \nabla \tilde {\bf H}\|_{L^p}+\| \nabla \tilde {\bf H}\|_{L^q}\right). \end{eqnarray} $

结合(3.33)和(3.34)式, 有

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left(\| \tilde {\bf H}\|_{L^2}+\| \nabla \tilde {\bf H}\|_{L^p}\right) \\ &\leq & C\left(\phi^\alpha(t)+\| \nabla^2 {\bf u}\|_{L^2}+\| \nabla^2 {\bf u}\|_{ L^p}\right) \left(1+\| \nabla \tilde {\bf H}\|_{L^p}+\| \tilde {\bf H}\|_{L^2}+ \| \nabla \tilde {\bf H}\|_{L^q}\right). \end{eqnarray} $

对于$ \| \nabla \tilde {\bf H}\|_{L^p} $, 由文献[27]有

$ \begin{equation} \begin{array}{ll} { } \int_0^t\left(\| \nabla^2 {\bf u}\|_{ L^p}^{(p+1)/p}+\| \nabla\pi\|_{ L^p}^{(p+1)/p}\right){\rm d}s\le C\exp\left(C\int_0^t\phi^\alpha(s){\rm d}s\right), \\ { } \int_0^t\left(s\| \nabla^2 {\bf u}\|_{L^2\cap L^p}^2+s\| \nabla\pi\|_{L^2\cap L^p}^2\right){\rm d}s\leq C\exp\left(C\int_0^t\phi^\alpha(s){\rm d}s\right). \end{array} \end{equation} $

把(3.36)式代入(3.35)式, 再利用Gronwall不等式可以得到(3.29)式.证毕.

有了引理3.1–3.3的估计之后, 可以直接给出命题3.1的证明.

$ M\triangleq e^{Ce} $以及$ T_0 \triangleq \min\{T_1, (CM^\alpha)^{-1}\} $, $ { }\sup_{0\leq t\leq T_0}\phi(t)\leq M, $再结合(3.4), (3.18)和(3.36)式可以推出(3.3)式.命题3.1证毕.

4 先验估计(Ⅱ)

在这部分的先验估计中, 一般常数$ C $除了依赖于$ \mu, q, a, \eta_0, N_0 $$ C_0 $之外, 还依赖于一些初值$ \delta_0 $, $ \| \nabla^2 {\bf u}_0\|_{L^2} $, $ \| \nabla^2 \varrho_0\|_{L^q} $, $ \| \nabla^2 {\bf H}_0\|_{L^q} $, $ \|\bar {\bf x}^{\delta_0} \nabla^2 \varrho_0\|_{L^2} $, $ \|\bar {\bf x}^{\delta_0} \nabla^2 {\bf H}_0\|_{L^2} $以及$ \|{\bf g}\|_{L^2} $.

首先, 有下列估计成立

引理4.1  存在常数$ C > 0 $, 使得

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}\left(\|\bar {\bf x}^{\delta_0} \nabla^2 \varrho\|_{L^2} +\|\bar {\bf x}^{\delta_0} \nabla^2 {\bf H}\|_{L^2}\right)\leq C. \end{equation} $

  由兼容性条件(1.10), (2.1)和方程(2.2)$ _2 $, 有$ \sqrt \varrho {\bf u}_t(t = 0, {\bf x})\triangleq -{\bf g}-\sqrt{ \varrho_0} {\bf u}_0\cdot \nabla {\bf u}_0, $对方程(3.28)在$ (0, T_0) $上积分并利用(3.3)和(3.4)式, 可得

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}\|\sqrt \varrho {\bf u}_t\|_{L^2}^2+\int_0^{T_0} \| \nabla {\bf u}_t\|_{L^2}^2dt\leq C, \end{equation} $

结合上式和(3.3)式以及(3.18)式可以推出

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}\| \nabla {\bf u}\|_{H^1}\leq C. \end{equation} $

另一方面, 结合(3.3)式, (3.31)式以及(4.3)式, 对$ \delta\in (0, 1] $, 显然有

$ \begin{equation} \| \varrho^\delta {\bf u}\|_{L^\infty}+\|\bar {\bf x}^{-\delta} {\bf u}\|_{L^\infty}\leq C(\delta). \end{equation} $

而对$ 2\leq r\leq q $, 通过直接计算

$ \begin{equation} \| \varrho_t(\bar {\bf x}^{(1+a)/2}+| {\bf u}|)\|_{L^r}+\| {\bf H}_t(\bar {\bf x}^{(1+a)/2} +| {\bf u}|)\|_{L^r}\leq C. \end{equation} $

$ \delta\in (0, 1] $$ s>2/\delta $, 由(2.2)$ _1 $, (2.2)$ _3 $, (3.3), (4.3)和(4.4)式, 可以从(3.9), (4.2), (4.3)和(4.4)式得到

$ \begin{eqnarray} \|\bar {\bf x}^{-\delta} {\bf u}_t\|_{L^s}+\|\bar {\bf x}^{-\delta} {\bf u}\cdot \nabla {\bf u}\|_{L^s} &\leq & C\|\bar {\bf x}^{-\delta} {\bf u}_t\|_{L^s} +C\|\bar {\bf x}^{-\delta} {\bf u}\|_{L^\infty}\| \nabla {\bf u}\|_{L^s}\\ &\leq &C(\delta, s)+C(\delta, s)\| \nabla {\bf u}_t\|_{L^2}. \end{eqnarray} $

下面定义$ \bar {\bf H}\triangleq \bar {\bf x}^{\delta_0} {\bf H} $$ \bar \varrho\triangleq \bar {\bf x}^{\delta_0} \varrho $, 则由(3.3)式容易得到

$ \begin{equation} \|\bar \varrho\|_{L^\infty}+\| \nabla\bar \varrho\|_{L^2\cap L^q}+\|\bar {\bf H}\|_{L^\infty}+ \| \nabla \bar {\bf H}\|_{L^2\cap L^q}\leq C, \end{equation} $

其中$ \bar \varrho $$ \bar {\bf H} $分别满足

$ \begin{equation} \bar \varrho_t+ {\bf u}\cdot \nabla\bar \varrho-\delta_0 \bar \varrho {\bf u}\cdot \nabla \ln\bar {\bf x} = 0 \end{equation} $

$ \begin{equation} \bar {\bf H}_t+ {\bf u}\cdot \nabla\bar {\bf H}-\delta_0 {\bf u}\cdot \nabla\ln\bar {\bf x}\cdot \bar {\bf H} = \bar {\bf H}\cdot \nabla {\bf u}, \end{equation} $

因此, 通过能量方法可以得到

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\| \nabla^2\bar {\bf H}\|_{L^2}&\leq & C\left(1+\| \nabla {\bf u}\| _{L^\infty} +\| {\bf u}\cdot \nabla\ln\bar {\bf x}\|_{L^\infty}\right)\| \nabla^2\bar {\bf H}\|_{L^2} +C\|| \nabla^2 {\bf u}|| \nabla\bar {\bf H}|\|_{L^2} \\ &&+C\|| \nabla\bar {\bf H}|| \nabla {\bf u}|| \nabla\ln\bar {\bf x}|\|_{L^2}+C\|| \nabla\bar {\bf H}|| {\bf u}| | \nabla^2 \ln\bar {\bf x}|\|_{L^2} \\ &&+C\|\bar {\bf H}\|_{L^\infty}\left(\| \nabla^2\left( {\bf u}\cdot \nabla\ln\bar {\bf x} \right)\|_{L^2}+\| \nabla^3 {\bf u}\|_{L^2}\right) \\ &\leq &C\left(1+\| \nabla {\bf u}\|_{L^\infty}\right)\| \nabla^2\bar {\bf H}\|_{L^2} +C\| \nabla^2 {\bf u}\|_{L^{2q/(q-2)}}\| \nabla\bar {\bf H}\|_{L^q} \\ &&+C\| \nabla\bar {\bf H}\|_{L^2}\| \nabla {\bf u}\|_{L^\infty}+C\| \nabla\bar {\bf H}\|_{L^2} \|| {\bf u}|| \nabla^2\ln\bar {\bf x}|\|_{L^\infty} \\ &&+C\| \nabla^2 {\bf u}\|_{L^2}+C\| \nabla {\bf u}\|_{L^2}+C\|| {\bf u}|| \nabla^3\ln\bar {\bf x}|\|_{L^2} +C\| \nabla^3 {\bf u}\|_{L^2} \\ &\leq & C\left(1+\| \nabla {\bf u}\|_{L^\infty}\right)\| \nabla^2\bar {\bf H}\|_{L^2}+C +C\| \nabla^3 {\bf u}\|_{L^2}, \end{eqnarray} $

在第二个和第三个不等式用到了(4.4)式和(4.7)式.类似的, 可以从(4.8)式得到

$ \begin{equation} \frac{\rm d}{{\rm d}t}\| \nabla^2\bar \varrho\|_{L^2}\leq C\left(1+\| \nabla {\bf u}\|_{L^\infty}\right)\| \nabla^2\bar \varrho\|_{L^2}+C +C\| \nabla^3 {\bf u}\|_{L^2}. \end{equation} $

结合(4.10)和(4.11)式, 有

$ \begin{equation} \frac{\rm d}{{\rm d}t}\left(\| \nabla^2\bar \varrho\|_{L^2}+\| \nabla^2\bar {\bf H}\|_{L^2}\right) \leq C\left(1+\| \nabla {\bf u}\|_{L^\infty}\right)\left(\| \nabla^2\bar \varrho\|_{L^2}+ \| \nabla^2\bar {\bf H}\|_{L^2}\right) +C+C\| \nabla^3 {\bf u}\|_{L^2}. \end{equation} $

至于$ \| \nabla^3 {\bf u}\|_{L^2} $, 由(2.7)和(4.3)式, 有估计

$ \begin{eqnarray} \| \nabla^3 {\bf u}\|_{L^2}&\leq &C \| \nabla( \varrho {\bf u}_t)\|_{L^2}+C\| \nabla( \varrho {\bf u}\cdot \nabla {\bf u})\|_{L^2} +C\| \nabla^2| {\bf H}|^2\|_{L^2}+C \| \nabla( {\bf H}\cdot \nabla {\bf H})\|_{L^2} \\ &\leq &C\|\bar \varrho\|_{L^\infty}\| \nabla {\bf u}_t\|_{L^2}+C\|\bar {\bf x}^a \nabla \varrho\|_{L^q}\|\bar {\bf x}^{-a} {\bf u}_t\|_{L^{2q/(q-2)}} \\ &&+C\|\bar {\bf x}^{-\delta} {\bf u}\|_{L^\infty} \|\bar {\bf x}^\delta \nabla \varrho\|_{L^q} \| \nabla {\bf u}\|_{L^{2q/(q-2)}}+C\|\bar \varrho\|_{L^\infty}\| \nabla {\bf u}\|_{L^4}^2 \\ &&+C\|\bar \varrho\|_{L^\infty}\|\bar {\bf x}^{-\delta} {\bf u}\|_{L^\infty}\| \nabla^2 {\bf u}\| _{L^2}^2 +C\| \nabla\bar {\bf H}\|_{L^4}^2 +C\|\bar {\bf H}\|_{L^\infty}\| \nabla^2 {\bf H}\|_{L^2} \\ &\leq &C\| \nabla {\bf u}_t\|_{L^2}+C\left(\| \nabla^2\bar \varrho\|_{L^2} +\| \nabla^2\bar {\bf H}\|_{L^2}\right)+C, \end{eqnarray} $

上面最后一个不等式用了估计(3.3), (4.3), (4.4), (4.6)以及如下估计

$ \begin{eqnarray} \|\bar {\bf x}^{\delta_0} \nabla^2 \varrho\|_{L^2}+\|\bar {\bf x}^{\delta_0} \nabla^2 {\bf H}\|_{L^2} \leq C\| \nabla^2(\bar {\bf x}^{\delta_0} \varrho)\|_{L^2}+\| \nabla^2(\bar {\bf x}^{\delta_0} {\bf H})\|_{L^2}+C. \end{eqnarray} $

把(4.13)式代入(4.12)式, 可知

最后通过(3.3), (4.2)和(4.14)式, 以及Gronwall不等式, 可得(4.1)式.引理4.1证毕.

关于$ \nabla {\bf u}_t $, 有如下的正则性估计以及相应的扩散估计.

引理4.2  存在常数$ C > 0 $, 成立

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}t\| \nabla {\bf u}_t\|_{L^2}^2+\int_0^{T_0}t\left( \|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2+\| \nabla^2 {\bf u}_{t}\|_{L^2}^2\right){\rm d}t\leq C. \end{equation} $

  对(3.22)式两端乘以$ {\bf u}_{tt} $并在$ B_R $上积分, 通过分部积分可得

$ \begin{eqnarray} &&\frac12\frac{\rm d}{{\rm d}t}\left(\mu\| \nabla {\bf u}_t\|_{L^2}^2\right)+\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2 \\ & = &-\int\left(2 \varrho {\bf u}\cdot \nabla {\bf u}_t\cdot {\bf u}_{tt}+ \varrho {\bf u}_t\cdot \nabla {\bf u} \cdot {\bf u}_{tt}\right){\rm d} {\bf x}-\int \varrho {\bf u}\cdot \nabla( {\bf u}\cdot \nabla {\bf u})\cdot {\bf u}_{tt}{\rm d} {\bf x} \\ &&-\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt}\cdot {\bf u}_t{\rm d} {\bf x}-\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt} \cdot( {\bf u} \cdot \nabla) {\bf u} {\rm d} {\bf x} \\ &&-\int {\bf H}_t\cdot \nabla {\bf u}_{tt}\cdot {\bf H} {\rm d} {\bf x}-\int {\bf H}\cdot \nabla {\bf u}_{tt}\cdot {\bf H}_t{\rm d} {\bf x} \\ & = & \sum\limits_{i = 1}^6{I_i}. \end{eqnarray} $

下面对(4.16)式进行逐项估计.对于$ I_1 $, $ I_2 $项, 由(3.3), (4.2)–(4.4)式以及(4.6)式有

$ \begin{eqnarray} &&\left|\int\left(2 \varrho {\bf u}\cdot \nabla {\bf u}_t\cdot {\bf u}_{tt}+ \varrho {\bf u}_t\cdot \nabla {\bf u} \cdot {\bf u}_{tt}\right){\rm d} {\bf x}\right|+\left|\int \varrho {\bf u}\cdot \nabla( {\bf u}\cdot \nabla {\bf u}) \cdot {\bf u}_{tt}{\rm d} {\bf x}\right| \\ &\leq & \varepsilon\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2 +C( \varepsilon)\left(\|\sqrt \varrho {\bf u}\| _{L^\infty}^2 \| \nabla {\bf u}_t\|_{L^2}^2+\|\sqrt \varrho {\bf u}_t\|^2_{L^4}\| \nabla {\bf u}\| _{L^4}^2\right) \\ &&+C( \varepsilon)\left(\|\sqrt \varrho {\bf u}\|_{L^\infty}^2\| \nabla {\bf u}\|_{L^4}^2 +\| \varrho^{1/4} {\bf u}\|_{L^\infty}^4\| \nabla^2 {\bf u}\|_{L^2}^2\right) \\ &\leq & \varepsilon\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2 +C( \varepsilon)\left(1+\| \nabla {\bf u}_t\|_{L^2}^2 \right). \end{eqnarray} $

对于$ I_3 $, $ I_4 $项, 有

$ \begin{eqnarray} &&-\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt}\cdot {\bf u}_t{\rm d} {\bf x}-\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt} \cdot( {\bf u} \cdot \nabla) {\bf u} {\rm d} {\bf x} \\ & = &-\frac{\rm d}{{\rm d}t}\int\left( \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot {\bf u}_t+ \varrho {\bf u} \cdot \nabla {\bf u}_{t}\cdot( {\bf u} \cdot \nabla) {\bf u}\right){\rm d} {\bf x} +\int( \varrho {\bf u})_t\cdot \nabla {\bf u}_{t}\cdot {\bf u}_t{\rm d} {\bf x} \\ &&+\int( \varrho {\bf u})_t\cdot \nabla {\bf u}_{t}\cdot( {\bf u} \cdot \nabla) {\bf u} {\rm d} {\bf x}+\int \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot {\bf u}_{tt}{\rm d} {\bf x} \\ &&+\int \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot( {\bf u}_t \cdot \nabla) {\bf u} {\rm d} {\bf x} +\int \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot( {\bf u} \cdot \nabla) {\bf u}_t {\rm d} {\bf x}. \end{eqnarray} $

上式右端不含$ \frac{\rm d}{{\rm d}t} $的项都可以估计.首先, 由Hölder不等式以及(3.3)和(4.4)–(4.6)式有

$ \begin{eqnarray} \int( \varrho {\bf u})_t\cdot \nabla {\bf u}_{t}\cdot {\bf u}_t{\rm d} {\bf x} &\leq & C\| \varrho\bar {\bf x}^a\|_{L^\infty}\|\bar {\bf x}^{-a/2} {\bf u}_t\|_{L^4}^2 \| \nabla {\bf u}_t\|_{L^2}\\ &&+C\|\bar {\bf x}^{(1+a)/2} \varrho_t\|_{L^2} \|\bar {\bf x}^{-1/2} {\bf u}\|_{L^\infty}\|\bar {\bf x}^{-a/2} {\bf u}_t\|_{L^4} \| \nabla {\bf u}_t\|_{L^4} \\ &\leq &\delta\| \nabla^2 {\bf u}_t\|_{L^2}^2+C(\delta)\| \nabla {\bf u}_t\|_{L^2}^4 +C(\delta), \end{eqnarray} $

同样不难得到下面估计

$ \begin{eqnarray} \int( \varrho {\bf u})_t\cdot \nabla {\bf u}_{t}\cdot( {\bf u} \cdot \nabla) {\bf u} {\rm d} {\bf x} &\leq & C\| \varrho\bar {\bf x}^a\|_{L^\infty} \|\bar {\bf x}^{-a/2} {\bf u}_t\|_{L^4} \|\bar {\bf x}^{-a/2} {\bf u}\cdot \nabla {\bf u}\|_{L^4}\| \nabla {\bf u}_t\|_{L^2} \\ &&+C\|\bar {\bf x}^{(1+a)/2} \varrho_t\|_{L^2}\|\bar {\bf x}^{-1/2} {\bf u}\|_{L^\infty} \|\bar {\bf x}^{-a/2} {\bf u}\|_{L^\infty}\| \nabla {\bf u}\|_{L^4}\| \nabla {\bf u}_t\|_{L^4} \\ &\leq &\delta\| \nabla^2 {\bf u}_t\|_{L^2}^2+C(\delta)\| \nabla {\bf u}_t\|_{L^2}^4 +C(\delta). \end{eqnarray} $

从(4.4)式容易得到

$ \begin{eqnarray} \int \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot {\bf u}_{tt}{\rm d} {\bf x}&\leq & C\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}\|\sqrt \varrho {\bf u}\|_{L^\infty}\| \nabla {\bf u}_t\|_{L^2}\\ &\leq & \varepsilon\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2 +C( \varepsilon)\| \nabla {\bf u}_t\|_{L^2}^2. \end{eqnarray} $

由(4.3), (4.4)及(4.6)式, 对于(4.18)式右端的第五项

$ \begin{eqnarray} \int \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot( {\bf u}_t \cdot \nabla) {\bf u} {\rm d} {\bf x} &\leq &C\| \varrho\bar {\bf x}^a\|_{L^\infty}\|\bar {\bf x}^{-a/2} {\bf u}\|_{L^\infty} \|\bar {\bf x}^{-a/2} {\bf u}_t\|_{L^4}\| \nabla {\bf u}\|_{L^4}\| \nabla {\bf u}_t\|_{L^2} \\ &\leq & C+C( \varepsilon)\| \nabla {\bf u}_t\|_{L^2}^2, \end{eqnarray} $

同样地, 有

$ \begin{eqnarray} \int \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot( {\bf u} \cdot \nabla) {\bf u}_t {\rm d} {\bf x} \leq C\| \varrho\bar {\bf x}^a\|_{L^\infty}\|\bar {\bf x}^{-a/2} {\bf u}\|_{L^\infty}^2\| \nabla {\bf u}_t\|_{L^2}^2 \leq C\| \nabla {\bf u}_t\|_{L^2}^2. \end{eqnarray} $

把上述估计(4.19)–(4.23)代入(4.18)式, 可以得到

$ \begin{eqnarray} &&-\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt}\cdot {\bf u}_t{\rm d} {\bf x}-\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt} \cdot( {\bf u} \cdot \nabla) {\bf u} {\rm d} {\bf x}\\ & = &-\frac{\rm d}{{\rm d}t}\int\left( \varrho {\bf u}\cdot \nabla {\bf u}_{t}\cdot {\bf u}_t+ \varrho {\bf u} \cdot \nabla {\bf u}_{t}\cdot( {\bf u} \cdot \nabla) {\bf u}\right){\rm d} {\bf x}+ \varepsilon\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2 \\ &&+C( \varepsilon, \delta)\| \nabla {\bf u}_t\|_{L^2}^4+\delta\| \nabla^2 {\bf u}_t\|_{L^2}^2 +C( \varepsilon, \delta). \end{eqnarray} $

对于$ I_5 $以及$ I_6 $项, 由(2.2)$ _3 $, (4.1), (4.3)以及(4.5)式, 容易得到

$ \begin{eqnarray} &&-\int {\bf H}_t\cdot \nabla {\bf u}_{tt}\cdot {\bf H} {\rm d} {\bf x}-\int {\bf H}\cdot \nabla {\bf u}_{tt}\cdot {\bf H}_t{\rm d} {\bf x} \\ & = &-\frac{\rm d}{{\rm d}t}\int\left( {\bf H}_t\cdot \nabla {\bf u} _t\cdot {\bf H} + {\bf H}\cdot \nabla {\bf u}_t\cdot {\bf H}_t\right){\rm d} {\bf x} \\ &&+\int {\bf H}_{tt}\cdot \nabla {\bf u}_t\cdot {\bf H} {\rm d} {\bf x}+2\int {\bf H}_t\cdot \nabla {\bf u}_t\cdot {\bf H}_t {\rm d} {\bf x}+\int {\bf H}\cdot \nabla {\bf u}_t\cdot {\bf H}_{tt}{\rm d} {\bf x} \\ &\leq &-\frac{\rm d}{{\rm d}t}\int\left( {\bf H}_t\cdot \nabla {\bf u} _t\cdot {\bf H} + {\bf H}\cdot \nabla {\bf u}_t\cdot {\bf H}_t\right){\rm d} {\bf x} \\ &&+C\| {\bf H}_t\bar {\bf x}^{(a+1)/2}\|_{L^q} \| \nabla {\bf u}_t\|_{L^2}\left(\| {\bf u}\bar {\bf x}^{-1/2}\|_{L^\infty} \| \nabla {\bf H}\|_{(q-2)/2q}+\| {\bf H}\|_{L^\infty}\| \nabla {\bf u}\|_{(q-2)/2q}\right) \\ &&+C\|\bar {\bf x}^{a/2} {\bf H}\|_{L^\infty}\|\bar {\bf x}^{-a/2} {\bf u}_t\|_{L^4} \| \nabla {\bf H}\|_{L^4} \| \nabla {\bf u}_t\|_{L^2}+C\| {\bf H}\|_{L^\infty}^2\| \nabla {\bf u}_t\|_{L^2}^2 \\ &&+C\|\bar {\bf x}^{a/2} {\bf H}\|_{L^\infty} \|\bar {\bf x}^{-a/2} {\bf u}\|_{L^\infty} \| \nabla {\bf H}_t\|_{L^2} \| \nabla {\bf u}_t\|_{L^2} \\ &&+C\| {\bf H}\|_{L^\infty}\| {\bf H}_t \bar {\bf x}^{a/2}\|_{L^q}\| \nabla {\bf u}_t\|_{L^2}\| \nabla {\bf u}\|_{(q-2)/2q} \\ &\leq &-\frac{\rm d}{{\rm d}t}\int\left( {\bf H}_t\cdot \nabla {\bf u} _t\cdot {\bf H} + {\bf H}\cdot \nabla {\bf u}_t\cdot {\bf H}_t\right){\rm d} {\bf x}+C \left(\| \nabla {\bf u}_t\|_{L^2}^2+1\right), \end{eqnarray} $

上式最后一个不等式用到了估计(4.1), (4.3), (4.4), (4.6), (4.7)以及下面事实

$ \begin{eqnarray} \| \nabla {\bf H}_t\|_{L^2}&\leq& C\|| \nabla {\bf u}|| \nabla {\bf H}|\|_{L^2}+C\|| {\bf u}|| \nabla^2 {\bf H}|\| _{L^2}+C\|| {\bf H}|| \nabla^2 {\bf u}|\|_{L^2} \\ &\leq &C\| \nabla {\bf u}\|_{L^{2q/(q-2)}}\| \nabla {\bf H}\|_{L^q}+C\|\bar {\bf x}^{-\delta_0} {\bf u}\|_{L^\infty} \|\bar {\bf x}^{\delta_0} \nabla^2 {\bf H}\|_{L^2}+C\| {\bf H}\|_{L^\infty} \| \nabla^2 {\bf u}\|_{L^2} \\ &\leq &C. \end{eqnarray} $

把(4.17)式和(4.24)–(4.25)式代入(4.16)式, 取$ \varepsilon $适当小, 可知

$ \begin{equation} \Phi'(t)+\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2\leq C\delta\| \nabla^2 {\bf u}_t\|_{L^2}^2 +C\| \nabla {\bf u}_t\|_{L^2}^4+C. \end{equation} $

通过(4.2)–(4.5)式, 有

因此

$ \begin{equation} C(\mu)\| \nabla {\bf u}_t\|_{L^2}^2-C\leq \Phi(t)\leq C\| \nabla {\bf u}_t\|_{L^2}^2 +C, \end{equation} $

为了完成证明, 下面只需给出(4.27)式右边第一项$ \| \nabla^2 {\bf u}_t\|_{L^2}^2 $的估计.事实上, 对方程(3.22)改写成下面形式

由引理2.3, (4.1)– (4.7)式以及(4.26)式, 利用Gagliardo-Nirenberg不等式可知

$ \begin{eqnarray} \| \nabla^2 {\bf u}_t\|_{L^2}^2 & \leq&C(\|- \varrho {\bf u}_{tt}- \varrho {\bf u}\cdot \nabla {\bf u}_t- \varrho_t( {\bf u}_t+ {\bf u}\cdot \nabla {\bf u}) - \varrho {\bf u}_t\cdot \nabla {\bf u}+ {\bf H}_t\cdot \nabla {\bf H}+ {\bf H}\cdot \nabla {\bf H}_t\|_{L^2}^2) \\ &\leq & C\| \varrho\|_{L^\infty} \|\sqrt \varrho {\bf u}_{tt} \|_{L^2}^2 +C\| \varrho\| _{L^\infty} \|\sqrt \varrho {\bf u} \|_{L^\infty}^2 \| \nabla {\bf u}_t\|_{L^2}^2 \\ && +C\|\bar {\bf x}^{(a+1)/2} \varrho_t\|_{L^q}^2\|\bar {\bf x}^{-1} {\bf u}_t\|_{L^{2q/(q-2)}}^2+C\|\bar {\bf x}^{(a+1)/2} \varrho_t\|_{L^q}^2\|\bar {\bf x}^{-1} {\bf u}\|_{L^\infty}^2 \| \nabla {\bf u}\|_{L^{2q/(q-2)}}^2 \\ &&+C\|\bar {\bf x}^{(a+1)/2} \varrho\|_{L^q}^2 \|\bar {\bf x}^{-1} {\bf u}\|_{L^\infty}^2\| \nabla {\bf u}\|_{L^{2q/(q-2)}}^2 +C\|\sqrt \varrho\|_{L^\infty}\|\sqrt \varrho {\bf u}_t\|_{L^2}^2\|\nabla {\bf u}\|_{L^2}^2 \\ && +C\|\bar {\bf x}^{(a+1)/2} {\bf H}_t\|_{L^q}^2 \| \nabla {\bf H}\|_{L^{2q/(q-2)}}^2+C\| {\bf H}\|_{L^\infty}^2\| \nabla {\bf H}_t\|_{L^2}^2 \\ &\leq & C\|\sqrt \varrho {\bf u}_{tt} \|_{L^2}^2+C\| \nabla {\bf u}_t\|_{L^2}^4+C, \end{eqnarray} $

把(4.29)式代入(4.27)式, 取$ \delta $适当小, 可得

$ \begin{equation} \Phi'(t)+\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2\leq C\| \nabla {\bf u}_t\|_{L^2}^4+C. \end{equation} $

对方程(4.30)两端乘以$ t $并在$ (0, T_0) $上关于$ t $积分, 由(4.2), (4.28)和(4.29)式以及Gronwall不等式可知

因此, (4.15)式成立, 引理4.2得证.

关于密度和磁场有如下的高阶估计.

引理4.3  存在常数$ C > 0 $, 有

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}\left( \| \nabla^2 \varrho\|_{L^q}+\| \nabla^2 {\bf H}\|_{L^q}\right)\leq C. \end{equation} $

  对方程(4.8)和(4.9)两端分别用微分算子$ \nabla^2 $作用, 并对两个方程分别乘以\linebreak $ q| \nabla^2\bar \varrho| ^{q-2} \nabla^2\bar \varrho $$ q| \nabla^2\bar {\bf H}|^{q-2} \nabla^2\bar {\bf H} $, 然后在$ B_R $积分可得

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left(\| \nabla^2\bar {\bf H}\|_{L^q}+\| \nabla^2\bar \varrho\|_{L^q}\right) \\ &\leq &C\| \nabla {\bf u}\|_{L^\infty}\left(\| \nabla^2\bar {\bf H}\|_{L^q} +\| \nabla^2 \bar \varrho\|_{L^q}\right)+ \left( \| \nabla\bar {\bf H}\| _{L^\infty} +\| \nabla \bar \varrho\|_{L^\infty}\right)\| \nabla^2 {\bf u}\|_{L^q} \\ &\leq &C\left(1+\| \nabla^2 {\bf u}\|_{L^q}\right)\left(1+\| \nabla^2\bar {\bf H}\|_{L^q} +\| \nabla^2 \bar \varrho\|_{L^q}\right)+C\| \nabla^3 {\bf u} \|_{L^q}. \end{eqnarray} $

根据(2.7)式, 方程(4.32)右边的最后一项可以做如下估计

$ \begin{eqnarray} \| \nabla^3 {\bf u}\|_{L^q}+\|\nabla^2\pi\|_{L^q}&\leq &C\| \nabla( \varrho {\bf u}_t)\|_{L^q}+C\| \nabla( \varrho {\bf u}\cdot \nabla {\bf u}) \|_{L^q}+C\| \nabla ( {\bf H}\cdot \nabla {\bf H} )\|_{L^q} \\ &\leq & C\|\bar {\bf x}^{-a} {\bf u}_t\|_{L^\infty}\|\bar {\bf x}^a \nabla \varrho\|_{L^q} +C\|\bar {\bf x}^a \varrho\|_{L^\infty}\|\bar {\bf x}^{-a} \nabla {\bf u}_t\|_{L^q} \\ &&+C\|\bar {\bf x}^a \nabla \varrho\|_{L^q}\|\bar {\bf x}^{-a} {\bf u}\|_{L^\infty} \| \nabla {\bf u}\|_{L^\infty}+C\| \varrho\|_{L^\infty} \| \nabla {\bf u}\|_{L^{2q}}^2 \\ &&+C\|\bar {\bf x}^a \varrho\|_{L^\infty}\|\bar {\bf x}^{-a} {\bf u}\|_{L^\infty} \| \nabla^2 {\bf u}\|_{L^q} \\ &&+C\|\bar {\bf x}^{a} {\bf H}\|_{L^\infty}\|\bar {\bf x}^{-a} \nabla^2 {\bf H}\|_{L^q} +C\| \nabla {\bf H}\|_{L^{2q}}^2 \\ &\leq &C\| \nabla {\bf u}_t\|_{L^q}+C\|\bar {\bf x}^{-a} {\bf u}_t\|_{L^q} +\frac12\| \nabla^3 {\bf u}\|_{L^q}+C\| \nabla^2\bar {\bf H}\|_{L^q}+C \\ &\leq &C\| \nabla {\bf u}_t\|_{L^2}^{2/q}\| \nabla^2 {\bf u}_t\|_{L^2}^{(q-2)/q} +C\| \nabla {\bf u}_t\|_{L^2}+\frac12\| \nabla^3 {\bf u}\|_{L^q} \\ &&+C\| \nabla^2\bar {\bf H}\|_{L^q}+C, \end{eqnarray} $

上述估计还用到了(3.3), (4.3), (4.4), (4.6)以及(4.7)式.

另一方面, 由(4.15)式

$ \begin{eqnarray} &&\int_0^{T_0}\left(\| \nabla {\bf u}_t\|_{L^2}^{2/q}\| \nabla^2 {\bf u}_t\|_{L^2} ^{(q-2)/q}\right)^{(q+1)/q}{\rm d}t \\ &\leq &C\sup\limits_{0\leq t\leq T_0}\left(t\| \nabla {\bf u}_t\|_{L^2}^2\right) ^{(q+1)/q^2}\int_0^{T_0}\left(t\| \nabla^2 {\bf u}_t\|_{L^2}^2 +t^{-(q^2+q)/(q^2+q+2)}\right){\rm d}t \\ &\leq &C. \end{eqnarray} $

把(4.33)式代入(4.32)式, 利用Gronwall不等式可得(4.31), (3.3), (4.2)以及(4.34)式.引理4.3得证.

关于速度的三阶导数, 以及$ {\bf u}_t $二阶导数有下面的带权估计.

引理4.4  对常数$ C > 0 $, 有

$ \begin{eqnarray} &&\sup\limits_{0\leq t\leq T_0}t\left( \| \nabla^3 {\bf u}\|_{L^2\cap L^q}+\| \nabla {\bf u}_t\|_{H^1} +\| \nabla^2( \varrho {\bf u})\|_{L^{(q+2)/2}}\right) \\ &&+\int_0^{T_0}t^2\left(\| \nabla {\bf u}_{tt}\| _{L^2}^2+\|\bar {\bf x}^{-1} {\bf u}_{tt}\|_{L^2}^2 \right){\rm d}t \leq C. \end{eqnarray} $

  如果有下面估计成立

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}t^2\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2+\int_0^{T_0} t^2\| \nabla {\bf u}_{tt}\|_{L^2}^2 {\rm d}t\leq C, \end{equation} $

则不难得到(4.35)式的证明.事实上, 结合上式与不等式(2.5), (4.15)以及(4.29)可得

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}t\| \nabla {\bf u}_t\|_{H^1}+\int_0^{T_0}t^2\|\bar {\bf x}^{-1} {\bf u}_{tt}\|_{L^2}^2dt \leq C. \end{equation} $

进一步, 根据(4.13), (4.31), (4.33)和(4.34)式有

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}t\| \nabla^3 {\bf u}\|_{L^2\cap L^q}\leq C, \end{equation} $

最后, 结合(3.3), (4.1)和(4.31)式, 不难得到

$ \begin{eqnarray} t\| \nabla^2( \varrho {\bf u})\|_{L^{(q+2)/2}} &\leq &C t\|| \nabla^2 \varrho|| {\bf u}|\|_{L^{(q+2)/2}} +Ct\|| \nabla \varrho|| \nabla {\bf u}|\|_{L^{(q+2)/2}}+Ct\| \varrho| \nabla^2 {\bf u}|\|_{L^{(q+2)/2}} \\ &\leq &Ct\|\bar {\bf x}^{\delta_0} \nabla^2 \varrho\|_{L^2}^{2/(q+2)}\| \nabla^2 \varrho\|_{L^q} ^{q/(q+2)}\|\bar {\bf x}^{-2\delta_0/(q+2)} {\bf u}\|_{L^\infty} \\ &&+Ct\| \nabla \varrho\|_{L^q}\| \nabla {\bf u}\|_{L^{q(q+2)/(q-2)}}+Ct\| \nabla^2 {\bf u}\| _{L^{(q+2)/2}} \\ &\leq &C. \end{eqnarray} $

因此, 从(4.36)–(4.39)式可得不等式(4.35).

下面只需证明(4.36)式成立即可.首先对方程(3.22)关于$ t $求导可得

方程两边乘以$ {\bf u}_{tt} $并在$ B_R $分部积分, 得

$ \begin{eqnarray} &&\frac12\frac{\rm d}{{\rm d}t}\int \varrho| {\bf u}_{tt}|^2{\rm d} {\bf x}+\int\left(\mu| \nabla {\bf u}_{tt}|^2 \right){\rm d} {\bf x} \\ & = &-4\int \varrho {\bf u}\cdot \nabla {\bf u}_{tt}\cdot {\bf u}_{tt}{\rm d} {\bf x}-\int( \varrho {\bf u})_t\cdot\left( \nabla( {\bf u}_t\cdot {\bf u}_{tt})+2 \nabla {\bf u}_t\cdot {\bf u}_{tt}\right) \\ &&-\int( \varrho {\bf u})_t\cdot \nabla( {\bf u}\cdot \nabla {\bf u}\cdot {\bf u}_{tt}){\rm d} {\bf x}-2\int \varrho_t {\bf u}_t \cdot \nabla {\bf u}\cdot {\bf u}_{tt}{\rm d} {\bf x}-\int \varrho {\bf u}_{tt}\cdot \nabla {\bf u}\cdot {\bf u}_{tt}{\rm d} {\bf x} \\ &&+\int {\bf H}_{tt}\cdot \nabla {\bf H}\cdot {\bf u}_{tt}{\rm d} {\bf x}+2\int {\bf H}_t\cdot \nabla {\bf H}_t\cdot {\bf u}_{tt}{\rm d} {\bf x}+\int {\bf H}\cdot \nabla {\bf H}_{tt}\cdot {\bf u}_{tt}{\rm d} {\bf x} \\ &\triangleq&\sum\limits_{i = 1}^{8}J_i. \end{eqnarray} $

下面只需对方程(4.40)右端每一项进行估计即可.对于$ J_1 $, 利用(4.4)式可以直接估计

$ \begin{equation} |J_1|\leq C\|\sqrt \varrho {\bf u}\|_{L^\infty}\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}\| \nabla {\bf u}_{tt}\|_{L^2}\leq \varepsilon\| \nabla {\bf u}_{tt}\|_{L^2}^2+C( \varepsilon) \|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2. \end{equation} $

对于$ J_2 $, 有如下估计

$ \begin{eqnarray} |J_2|&\leq &C\|\bar {\bf x}( \varrho {\bf u})_t\|_{L^q}\left(\|\bar {\bf x}^{-1} {\bf u}_{tt}\| _{2q/(q-2)}\| \nabla {\bf u}_t\|_{L^2}+\|\bar {\bf x}^{-1} {\bf u}_{t}\| _{2q/(q-2)}\| \nabla {\bf u}_{tt}\|_{L^2}\right) \\ &\leq &C\left(1+\| \nabla {\bf u}_t\|_{L^2}^2\right)\left(\|\sqrt \varrho {\bf u}_{tt}\| _{L^2}+\| \nabla {\bf u}_{tt}\|_{L^2} \right) \\ &\leq & \varepsilon\left(\|\sqrt \varrho {\bf u}_{tt}\| _{L^2}^2+\| \nabla {\bf u}_{tt}\|_{L^2}^2 \right)+C( \varepsilon)\left(1+\| \nabla {\bf u}_t\|_{L^2}^4\right), \end{eqnarray} $

上述估计用到了(2.6), (3.9)以及(4.5)式.除此之外, 还有用到了如下事实

$ \begin{eqnarray} \|\bar {\bf x}( \varrho {\bf u})_t\|_{L^q} &\leq &C\|\bar {\bf x}| \varrho_t|| {\bf u}|\|_{L^q} +C\|\bar {\bf x} \varrho| {\bf u}_t|\|_{L^q} \\ &\leq &C\| \varrho_t\bar {\bf x}^{(1+a)/2}\|_{L^q}\|\bar {\bf x}^{-(a-1)/2} {\bf u}\| _{L^\infty} +C\| \varrho\bar {\bf x}^a\|_{L^{2q/(3- \tilde a)}}\| {\bf u}_t\bar {\bf x}^{1-a}\|_{L^{2q/( \tilde a-1)}} \\ &\leq &C+C\| \nabla {\bf u}_t\|_{L^2}. \end{eqnarray} $

其中$ \tilde a = \min\{2, a\} $, 不等式(4.43)得到用到了(4.4)–(4.6)式.

根据(3.9), (4.3), (4.4)以及(4.43)式可以得到$ J_3 $的估计.

$ \begin{eqnarray} |J_3|&\leq &C\int|( \varrho {\bf u})_t|\left(| {\bf u}|| \nabla^2 {\bf u}|| {\bf u}_{tt}|+| {\bf u}|| \nabla {\bf u}| | \nabla {\bf u}_{tt}|+| \nabla {\bf u}|^2| {\bf u}_{tt}|\right){\rm d} {\bf x}\\ &\leq &C\|\bar {\bf x}( \varrho {\bf u})_t\|_{L^q}\|\bar {\bf x}^{-1/q} {\bf u}\|_{L^\infty}\| \nabla^2 {\bf u}\| _{L^2} \|\bar {\bf x}^{-(q-1)/q} {\bf u}_{tt}\|_{L^{2q/(q-2)}} \\ &&+C\|\bar {\bf x}( \varrho {\bf u})_t\|_{L^q}\|\bar {\bf x}^{-1} {\bf u}\|_{L^\infty}\| \nabla {\bf u}\| _{L^{2q/ (q-2)}}\| \nabla {\bf u}_{tt}\|_{L^2} \\ &&+C\|\bar {\bf x}( \varrho {\bf u})_t\|_{L^q}\| \nabla {\bf u}\|_{L^4}^2\|\bar {\bf x}^{-1} {\bf u}_{tt}\| _{L^{2q/(q-2)}} \\ &\leq &C(1+\| \nabla {\bf u}_t\|_{L^2})\left(\|\sqrt \varrho {\bf u}_{tt}\| _{L^2}+\| \nabla {\bf u}_{tt}\|_{L^2} \right) \\ &\leq & \varepsilon\left(\|\sqrt \varrho {\bf u}_{tt}\| _{L^2}^2+\| \nabla {\bf u}_{tt}\|_{L^2}^2 \right)+C( \varepsilon)\left(1+\| \nabla {\bf u}_t\|_{L^2}^2\right). \end{eqnarray} $

由柯西不等式以及(3.9), (4.5)和(4.6)式, 对$ J_4 $

$ \begin{eqnarray} |J_4|&\leq &C\int| \varrho_t|| {\bf u}_t|| \nabla {\bf u}|| {\bf u}_{tt}|{\rm d} {\bf x}\\ &\leq & C\|\bar {\bf x} \varrho_t\|_{L^q}\|\bar {\bf x}^{-1/2} {\bf u}_t\|_{L^{4q/(q-2)}} \| \nabla {\bf u}\|_{L^2}\|\bar {\bf x}^{-1/2} {\bf u}_{tt}\|_{L^{4q/(q-2)}} \\ &\leq & C\left(1+\| \nabla {\bf u}_t\|_{L^2}\right)\left(\|\sqrt \varrho {\bf u}_{tt}\| _{L^2}+\| \nabla {\bf u}_{tt}\|_{L^2} \right) \\ &\leq & \varepsilon\left(\|\sqrt \varrho {\bf u}_{tt}\| _{L^2}^2+\| \nabla {\bf u}_{tt}\|_{L^2}^2 \right)+C( \varepsilon)\left(1+\| \nabla {\bf u}_t\|_{L^2}^2\right). \end{eqnarray} $

利用Gagliardo-Nirenberg不等式和(4.3)式可以得到$ J_5 $的估计

$ \begin{eqnarray} |J_5|\leq C\| \nabla {\bf u}\|_{L^\infty}\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2\leq C\left(1+\| \nabla^2 {\bf u}\|_{L^q}\right)\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2. \end{eqnarray} $

对于$ J_6 $$ J_8 $的估计, 首先由方程(2.2)$ _3 $和不等式(3.3)以及(4.3)–(4.6)式, 有

$ \begin{eqnarray} \| {\bf H}_{tt}\|_{L^2}&\leq & C\|\bar {\bf x}^{-\theta_0} {\bf u}_t\| _{2q/[(q-2)\theta_0]} \|\bar {\bf x}^{\theta_0} \nabla {\bf H}\|_{L^{2q/[q-(q-2)\theta_0]}}+C\| \nabla {\bf u}_t\|_{L^2} \\ &&+C\|\bar {\bf x}^{-\delta_0/2} {\bf u}\|_{L^\infty}\|\bar {\bf x}^{\delta_0/2} \nabla {\bf H}_t\|_{L^2}+C\| {\bf H}_t\|_{L^q}\| \nabla {\bf u}\|_{L^{2q/(q-2)}} \\ &\leq &C\left(1+\| \nabla {\bf u}_t\|_{L^2}\right), \end{eqnarray} $

对于上式最后一个不等号, 这里用到了下面估计

该不等式在条件(4.1), (4.3), (4.4)和(4.7)下是成立的.有了上述不等式做准备之后, 关于$ J_6 $$ J_8 $再利用(4.47), (4.5), (4.7)和(4.26)式以及分部积分, 则

$ \begin{eqnarray} |J_6|+|J_7|+|J_8|&\leq &C\| {\bf H}_t\|_{L^4}^2\| \nabla {\bf u}_{tt}\|_{L^2} +C\| {\bf H}\|_{L^\infty}\| {\bf H}_{tt}\|_{L^2}\| \nabla {\bf u}_{tt}\|_{L^2} \\ &\leq &C\left(\| \nabla {\bf u}_t\|_{L^2}+\| {\bf H}_t\|_{L^2}^2 +\| \nabla {\bf H}_t\|_{L^2}^2\right) \| \nabla {\bf u}_{tt}\|_{L^2} \\ &\leq & \varepsilon\| \nabla {\bf u}_{tt}\|_{L^2}^2 +C( \varepsilon)\left(1+\| \nabla {\bf u}_t\|_{L^2}^2\right). \end{eqnarray} $

$ J_1 $$ J_8 $的估计代入(4.40)式, 令$ \varepsilon $足够小, 对(4.40)式乘以权重$ t^2 $并积分, 则由Gronwall不等式可得(4.36)式.引理4.4证毕.

5 主要结论的证明

有了第3部分, 第4部分的一系列先验估计, 下面可以证明该文的主要结论, 即定理1.1, 定理1.2和定理1.3.首先, 给出定理1.1的证明.

定理1.1的证明  设$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $是定理1.1中的初值.不失一般性, 假设初始密度$ \varrho_0 $满足

这意味着存在$ N_0 > 0 $使得

$ \begin{equation} \int_{B_{N_0}} \varrho_0{\rm d} {\bf x}\geq\frac34\int_{ {\mathbb{R}}^2} \varrho_0 {\rm d} {\bf x} = \frac34. \end{equation} $

$ \varrho_0^R = \hat \varrho_0^R+R^{-1}e^{-| {\bf x}|^2} $, 其中$ 0\leq \hat \varrho_0^R\in C_0^\infty( {\mathbb{R}}^2) $并满足

$ \begin{equation} \left\{ \begin{array}{lll} { } \int_{B_{N_0}}\hat \varrho_0^R {\rm d} {\bf x}\geq 1/2, \\ \bar {\bf x}^a\hat \varrho_0^R\rightarrow\bar {\bf x}^a \varrho_0, \quad \mbox{在}\ L^1( {\mathbb{R}}^2)\cap H^1( {\mathbb{R}}^2)\cap W^{1, q}( {\mathbb{R}}^2), \end{array} \right.\ \mbox{当} \ R\rightarrow\infty. \end{equation} $

$ {\bf H}_0^R\in \{{\bf w}\in C_0^\infty(B_R)| {{\rm{div }}} {\bf w} = 0\} $满足

$ \begin{equation} {\bf H}_0^R\bar {\bf x}^a\rightarrow {\bf H}_0\bar {\bf x}^a \quad {\rm \mbox{在} \ }H^1( {\mathbb{R}}^2)\cap W^{1, q}( {\mathbb{R}}^2) \ {\rm \mbox{上} \ }, \qquad \mbox{当}\ R \rightarrow\infty. \end{equation} $

因为$ \nabla {\bf u}_0\in L^2( {\mathbb{R}}^2) $, 存在$ {\bf v}_i^R\in C_0^\infty(B_R) $$ (i = 1, 2) $使得

$ \begin{equation} \lim\limits_{R\rightarrow\infty}\|{{\bf v}}_i^R-\partial_i {\bf u}_0\|_{L^2( {\mathbb{R}}^2)} = 0, \quad i = 1, 2, \end{equation} $

接下来考虑下面Stokes系统的光滑解$ {\bf u}_0^R $

$ \begin{equation} \left\{ \begin{array}{lll} -\triangle {\bf u}_0^R+ \varrho_0^R {\bf u}_0^R+\nabla\pi^R_0 = \sqrt{ \varrho_0^R}{\bf h}^R-\partial_i{\bf v}_i^R, &\ {\rm \mbox{在} \ }B_R \ {\rm \mbox{上} \ }, \\ {{\rm{div }}} {\bf u} = 0, &\ {\rm \mbox{在} \ } B_R \ {\rm \mbox{上} \ }, \\ {\bf u}_0^R = 0, &\ {\rm \mbox{在} \ } \partial B_R \ {\rm \mbox{上} \ }, \end{array} \right. \end{equation} $

这里$ {\bf h}^R = (\sqrt{ \varrho_0} {\bf u}_0)*j_{1/R} $, 其中$ j_\delta $是宽度为$ \delta $的标准磨光函数.通过定义$ B_R $之外的部分为零, 把$ {\bf u}_0^R $延拓到整个平面$ {\mathbb{R}}^2 $, 见文献[28], 则有

$ \begin{equation} \lim\limits_{R\rightarrow\infty}\left(\| \nabla( \tilde {\bf u}_0^R- {\bf u}_0)\|_{L^2( {\mathbb{R}}^2)} +\|\sqrt{ \varrho_0^R} \tilde {\bf u}_0^R-\sqrt{ \varrho_0} {\bf u}_0\|_{L^2( {\mathbb{R}}^2)} \right) = 0. \end{equation} $

因此, 由引理2.1, 初值为$ ( \varrho_0^R, {\bf u}_0^R, {\bf H}_0^R) $的初边值问题2.2在$ B_R\times[0, T_R] $上存在经典解$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $.进一步, 由命题3.1可知存在不依赖于$ R $$ T_0 $使得(3.3)式对$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $成立.取$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $$ {\mathbb{R}}^2\backslash B_R $上为零, 使得$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $$ {\mathbb{R}}^2 $上延拓, 表示为

$ \varphi_R $为(3.6)中定义的磨光函数, 则由(3.3)可以得到

$ \begin{eqnarray} \sup\limits_{0\leq t\leq T_0}\left(\|\sqrt{ \tilde \varrho^R} \tilde {\bf u}^R\|_{L^2} +\| \nabla \tilde {\bf u}^R\|_{L^2}\right) \leq C+C\sup\limits_{0\leq t\leq T_0}\| \nabla {\bf u}^R\|_{L^2} \leq C, \end{eqnarray} $

以及

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}\| \tilde \varrho^R\bar {\bf x}^a\|_{L^1\cap L^\infty}\leq C. \end{equation} $

接下来, 对$ p\in [2, q] $, 由(3.3)和(3.29)式可知

$ \begin{eqnarray} &&\sup\limits_{0\leq t\leq T_0}\left(\| \nabla(\bar {\bf x}^a \tilde \varrho^R)\|_{L^p( {\mathbb{R}}^2)}+ \|\bar {\bf x}^a \nabla \tilde \varrho^R\|_{L^p( {\mathbb{R}}^2)}+\| \nabla(\bar {\bf x}^a \tilde {\bf H}^R)\| _{L^p( {\mathbb{R}}^2)} +\|\bar {\bf x}^a \nabla \tilde {\bf H}^R\|_{L^p( {\mathbb{R}}^2)}\right) \\ &\leq &C\sup\limits_{0\leq t\leq T_0}\left(\|\bar {\bf x}^a \nabla \varrho^R\|_{L^p(B_R)} +\|\bar {\bf x}^a \varrho^R \nabla\varphi_R\|_{L^p(B_R)}+\| \varrho^R \nabla\bar {\bf x}^a\|_{L^p(B_R)} \right) \\ &&+C\sup\limits_{0\leq t\leq T_0}\left(\|\bar {\bf x}^a \nabla {\bf H}^R\|_{L^p(B_R)} +\|\bar {\bf x}^a {\bf H}^R \nabla\varphi_R\|_{L^p(B_R)}+\| {\bf H}^R \nabla\bar {\bf x}^a\|_{L^p(B_R)} \right) \\ &\leq &C +C\|\bar {\bf x}^a \varrho^R\|_{L^p(B_R)}+C\|\bar {\bf x}^a {\bf H}^R\|_{L^p(B_R)} \\ &\leq &C. \end{eqnarray} $

另外, 由(3.3)以及(3.31)式有

$ \begin{equation} \int_0^{T_0}\left(\| \nabla^2 \tilde {\bf u}^R\|_{L^q( {\mathbb{R}}^2)}^{(q+1)/q}+t \| \nabla^2 \tilde {\bf u}^R\|_{L^q( {\mathbb{R}}^2)}^2+\| \nabla^2 \tilde {\bf u}^R\|_{L^2( {\mathbb{R}}^2)} ^2\right){\rm d}t\leq C, \end{equation} $

以及对任意的$ p\in [2, q] $, 有

$ \begin{eqnarray} &&\int_0^{T_0}\left(\|\bar {\bf x} \tilde \varrho_t^R\|_{L^p( {\mathbb{R}}^2)}^2 +\|\bar {\bf x} \tilde {\bf H}_t^R\|_{L^p( {\mathbb{R}}^2)}^2\right){\rm d}t \\ &\leq & C\int_0^{T_0}\left(\||\bar {\bf x}|| {\bf u}^R|| \nabla \varrho^R|\|_{L^p(B_R)}^2 +\|\bar {\bf x} \varrho^R {{\rm{div }}} {\bf u}^R\|_{L^p(B_R)}^2\right){\rm d}t \\ &&+C\int_0^{T_0}\left(\||\bar {\bf x}|| {\bf u}^R|| \nabla {\bf H}^R|\|_{L^p(B_R)}^2 +\|\bar {\bf x}| {\bf H}^R|| \nabla {\bf u}^R|\|_{L^p(B_R)}^2\right){\rm d}t \\ &\leq &C\int_0^{T_0}\|\bar {\bf x}^{1-a} {\bf u}^R\|_{L^\infty}^2\left( \|\bar {\bf x}^a \nabla \varrho^R\|_{L^p(B_R)}^2 +\|\bar {\bf x}^a \nabla {\bf H}^R\|_{L^p(B_R)}^2\right){\rm d}t \\ &\leq &C. \end{eqnarray} $

同时, 根据(3.3)和(3.21)式可以推出

$ \begin{equation} \sup\limits_{0\leq t\leq T_0}t\|\sqrt{ \tilde \varrho^R} \tilde {\bf u}_t^R\|_{L^2( {\mathbb{R}}^2)}^2 +\int_0^{T_0}t\| \nabla \tilde {\bf u}_t^R\|_{L^2( {\mathbb{R}}^2)}^2{\rm d}t \leq C+C\int_0^{T_0}t\| \nabla {\bf u}_t^R\|_{L^2(Ø)}^2 {\rm d}t \leq C. \end{equation} $

结合估计(5.7)–(5.12), $ R\rightarrow\infty $, 可以得到函数列$ ( \tilde \varrho^R, {\bf u}^R, \tilde{{\bf {\bf H}}}^R) $或者它的子列是弱收敛的, 假设收敛极限为$ ( \varrho, {\bf u}, {\bf H}) $, 因此有

$ \begin{equation} \bar {\bf x} \tilde{ \varrho^R}\rightarrow \bar {\bf x} \varrho, \quad \bar {\bf x} \tilde{ {\bf H}}^R\rightarrow \bar {\bf x} {\bf H}, \ \ \mbox{在}\ C(\overline{B_N}\times[0, T_0]) \mbox{ 中强收敛, 对任意的$ N>0, $} \end{equation} $

$ \begin{equation} \bar {\bf x}^a \tilde{ \varrho}^R\rightharpoonup \bar {\bf x}^a \varrho, \quad \bar {\bf x}^a \tilde{ {\bf H}}^R\rightharpoonup \bar {\bf x}^a {\bf H}, \ \ \mbox{ 在$ L^\infty(0, T_0; H^1( {\mathbb{R}}^2)\cap W^{1, q}( {\mathbb{R}}^2)) $ 中弱*收敛, } \end{equation} $

$ \begin{equation} \sqrt{ \tilde \varrho^R} \tilde {\bf u}^R\rightharpoonup\sqrt \varrho {\bf u}, \quad \nabla \tilde {\bf u}^R\rightharpoonup \nabla {\bf u}, \quad \mbox{在$ L^\infty(0, T_0; L^2( {\mathbb{R}}^2))$ 中弱*收敛, } \end{equation} $

$ \begin{equation} \nabla^2 \tilde {\bf u}^R\rightharpoonup \nabla^2 {\bf u}, \ \ \mbox{在 $ L^{(q+1)/q}(0, T_0; L^q( {\mathbb{R}}^2))\cap L^2((0, T_0)\times {\mathbb{R}}^2)$ 中弱收敛, } \end{equation} $

$ \begin{equation} t^{1/2} \nabla^2 \tilde {\bf u}^R\rightharpoonup t^{1/2} \nabla^2 {\bf u}, \ \ \mbox{ 在$ L^{2}(0, T_0; L^q( {\mathbb{R}}^2))$ 中弱收敛, } \end{equation} $

$ \begin{equation} t^{1/2}\sqrt{ \tilde \varrho^R} \tilde {\bf u}^R_t\rightharpoonup t^{1/2}\sqrt \varrho {\bf u}_t, \quad \nabla \tilde {\bf u}^R\rightharpoonup \nabla {\bf u}, \ \ \mbox{ 在$ L^{\infty}(0, T_0; L^2( {\mathbb{R}}^2))$中弱*收敛, } \end{equation} $

$ \begin{equation} t^{1/2} \nabla \tilde {\bf u}^R_t\rightharpoonup t^{1/2} \nabla {\bf u}_t, \ \ \mbox{ 在$ L^{\infty}((0, T_0)\times {\mathbb{R}}^2) $ 中弱收敛} \end{equation} $

$ \begin{equation} \bar {\bf x}^a \varrho\in L^\infty(0, T_0; L^1( {\mathbb{R}}^2)), \quad\inf\limits_{0\leq t\leq T_0} \int_{B_{2N_0}} \varrho(t, {\bf x}){\rm d} {\bf x}\geq \frac14. \end{equation} $

最后, 令$ R\rightarrow\infty $, 由(5.13)–(5.20)式可知$ ( \varrho, {\bf u}, {\bf H}) $是方程(1.1)–(1.3)定义于$ (0, T_0]\times {\mathbb{R}}^2 $上满足(1.6)和(1.7)式的强解.对于方程(1.1)–(1.3)的唯一性的证明可以参见文献[27].定理1.1证毕.

定理1.2的证明  设$ ( \varrho_0, {\bf u}_0, {\bf H}_0) $是定理1.2中的初值.和定理1.1的证明一样, 设

则存在$ N_0 > 0 $使得(5.1)式成立.令$ \varrho_0^R = \hat \varrho_0^R+R^{-1}e^{-| {\bf x}|^2} $, 其中$ 0\leq \hat \varrho_0^R\in C_0^\infty( {\mathbb{R}}^2) $, 并满足(5.2)式以及当$ R\rightarrow\infty $

$ \begin{equation} \left\{ \begin{array}{lll} \nabla^2\hat \varrho_0^R\rightarrow \nabla^2 \varrho_0, &{\rm \mbox{在}\ } L^q( {\mathbb{R}}^2) \ {\rm \mbox{上}\ }, \\ \bar {\bf x}^{\delta_0} \nabla^2\hat \varrho_0^R\rightarrow \bar {\bf x}^{\delta_0} \nabla^2 \varrho_0, &{\rm \mbox{在}\ } L^2( {\mathbb{R}}^2) \ {\rm \mbox{上}\ }, \end{array} \right. \end{equation} $

另一方面, 取$ {\bf H}_0^R\in \{{\bf w}\in C_0^\infty(B_R)| {{\rm{div }}} {\bf w} = 0\} $满足(5.3)式和

$ \begin{equation} \left\{ \begin{array}{lll} \nabla^2 {\bf H}^R_0\rightarrow \nabla^2 {\bf H}_0, &{\rm \mbox{在}\ } L^q( {\mathbb{R}}^2) \ {\rm \mbox{上}\ }, \\ \bar {\bf x}^{\delta_0} \nabla^2 {\bf H}_0^R\rightarrow \bar {\bf x}^{\delta_0} \nabla^2 {\bf H}_0, &{\rm \mbox{在}\ } L^2( {\mathbb{R}}^2) \ {\rm \mbox{上}\ }, \end{array} \right.\quad {\rm \mbox{当}\ } R\rightarrow\infty. \end{equation} $

接下来, 考虑Stokes问题的光滑解

$ \begin{equation} \left\{ \begin{array}{lll} -\mu\triangle {\bf u}_0^R+ \nabla\pi_0^R = (\nabla\times {\bf H}_0^R)\times {\bf H}_0^R - \varrho_0^R {\bf u}_0^R+\sqrt{ \varrho_0^R} {\bf h}^R, & \ {\rm \mbox{在}\ } B_R \ {\rm \mbox{上}\ }, \\ {{\rm{div }}} {\bf u} = 0, & \ {\rm \mbox{在}\ } {\rm in\ } B_R \ {\rm \mbox{上}\ }, \\ {\bf u}_0^R = 0, & \ {\rm \mbox{在}\ } \partial B_R \ {\rm \mbox{上}\ }, \end{array} \right. \end{equation} $

对(5.23)式两边乘以$ {\bf u}_0^R $并在$ B_R $上积分

可推出

$ \begin{equation} \|\sqrt{ \varrho_0^R} {\bf u}_0^R\|_{L^2(B_R)}^2+\| \nabla {\bf u}_0^R \|_{L^2(B_R)}^2 \leq C, \end{equation} $

这里常数$ C $$ R $无关.从(2.7)式, 可知

$ \begin{eqnarray} &&\| \nabla^2 {\bf u}_0^R\|_{L^2(B_R)}+\| \nabla \pi_0^R\|_{L^2(Ø)} \\ &\leq &C\|| {\bf H}_0^R|| \nabla {\bf H}_0^R|\|_{L^2(B_R)}+C\| \varrho_0^R {\bf u}_0^R\|_{L^2(B_R)} +C\|\sqrt{ \varrho_0^R}{\bf h}^R \|_{L^2(B_R)} \\ &\leq &C. \end{eqnarray} $

$ {\bf u}_0^R $$ {\mathbb{R}}^2 $上进行延拓, 延拓之后的函数记为$ \tilde {\bf u}_0^R $, 从(5.24)和(5.25)式可推出

结合上述估计以及(5.21)和(5.24)式可知存在子列$ R_j\rightarrow\infty $以及函数$ \tilde {\bf u}_0\in \{ \tilde {\bf u}_0\in H^2_{\rm loc}( {\mathbb{R}}^2)| $$ \sqrt{ \varrho_0} \tilde {\bf u}_0 \in L^2( {\mathbb{R}}^2), \nabla \tilde {\bf u}_0\in H^1( {\mathbb{R}}^2)\} $$ \nabla \tilde\pi_0\in L^2( {\mathbb{R}}^2) $使得

$ \begin{equation} \left\{ \begin{array}{lll} \sqrt{ \varrho_0^{R_j}} \tilde {\bf u}_0^{R_j}\rightharpoonup \sqrt{ \varrho_0} \tilde {\bf u}_0, & {\rm \mbox{在} \ } L^2( {\mathbb{R}}^2) {\rm \mbox{上弱收敛} \ }, \\ \nabla \tilde {\bf u}_0^{R_j}\rightharpoonup \nabla \tilde {\bf u}_0, &{\rm \mbox{在} \ } H^1( {\mathbb{R}}^2) {\rm \mbox{上弱收敛} \ }, \\ \nabla\pi^R_0\rightharpoonup \nabla \tilde\pi_0, &{\rm \mbox{在} \ } L^2( {\mathbb{R}}^2) {\rm \mbox{上弱收敛} \ }. \end{array} \right. \end{equation} $

容易验证$ \tilde {\bf u}_0^R $满足(5.23)式, 则可以从(5.21), (5.22), (5.23)和(5.26)式推出$ ( \tilde {\bf u}_0, \tilde\pi_0) $满足

因此, 由(1.9)式可知

$ \begin{equation} \tilde {\bf u}_0 = {\bf u}_0. \end{equation} $

另一方面, 由(5.23)式可知

结合(5.26)式有

因此, 由(5.26)和(5.27)式表明

$ \begin{equation} \lim\limits_{R\rightarrow\infty}\left(\| \nabla( \tilde {\bf u}_0^R- {\bf u}_0)\|_{L^2( {\mathbb{R}}^2)}+ \|\sqrt{ \varrho_0^R} \tilde {\bf u}_0^R-\sqrt{ \varrho_0} {\bf u}_0\|_{L^2( {\mathbb{R}}^2)}\right) = 0. \end{equation} $

和(5.28)式类似, 容易得到$ { }\lim_{R\rightarrow\infty}\| \nabla^2( \tilde {\bf u}_0^R- {\bf u}_0)\|_{L^2( {\mathbb{R}}^2)} = 0. $

最后, 由引理2.1, 初边值问题(2.2)在$ [0, T_R]\times B_R $上有局部经典解$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $.因此, 存在与$ R $无关的常数$ C $使得命题3.1和引理4.1–4.4的估计对$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $都成立.对$ ( \varrho^R, {\bf u}^R, {\bf H}^R) $$ {\mathbb{R}}^2\setminus B_R $上零延拓, 并令$ \tilde \varrho^R\triangleq\varphi_R \varrho^R, \ \tilde {\bf u}^R, \ \tilde {\bf H}^R\triangleq\varphi_R {\bf H}^R, $$ \varphi_R $和(3.6)式一样定义.可以从(3.3)式以及引理4.1–4.4推出序列$ ( \tilde \varrho^R, \tilde {\bf u}^R, \tilde {\bf H}^R) $或是它的一列子列是弱收敛到$ ( \varrho, {\bf u}, {\bf H}) $, 并满足(1.6), (1.7)和(1.10)式.通过标准的能量估计可知$ ( \varrho, {\bf u}, {\bf H}) $实际上是方程(1.1)–(1.3)的经典解.定理1.2证毕.

定理1.3的证明  下面给出定理1.3的证明, 采用反证法.设

$ \begin{equation} \limsup\limits_{T\rightarrow T^*}\left(\| {\bf H}\|_{L^\infty(0, T^*; L^\infty ( {\mathbb{R}}^2))}+\| \nabla {\bf H}\| _{L^1(0, T_*; L^r( {\mathbb{R}}^2)}\right) = M_0<\infty, \end{equation} $

对任意的$ r>2 $成立.

首先, 由于(3.5)式成立, 就有如下引理.

引理5.1  设$ ( \varrho, {\bf u}, \pi, {\bf H}) $是方程组(1.1)–(1.3)的光滑解.在假设(5.29)下, 对$ 0\leq T\leq T^* $, 成立

$ \begin{equation} \sup\limits_{t\in [0, T]}\mu\| \nabla {\bf u}\|_{L^2}^2+\int_0^T\|\sqrt \varrho\dot {\bf u}\|_{L^2}^2 {\rm d}t \leq C. \end{equation} $

  对(1.1)$ _2 $式两边乘以$ \dot {\bf u} $并在$ {\mathbb{R}}^2 $上积分, 可得

$ \begin{eqnarray} \int \varrho\dot {\bf u} {\rm d} {\bf x} = \mu\int \triangle {\bf u}\cdot\dot {\bf u} {\rm d} {\bf x} -\int \nabla \pi \cdot \dot {\bf u} {\rm d} {\bf x} -\frac12\int \nabla| {\bf H}|^2\cdot\dot {\bf u} {\rm d} {\bf x} +\int {\bf H}\cdot \nabla {\bf H}\cdot\dot {\bf u} {\rm d} {\bf x}. \end{eqnarray} $

对其每一项可以做估计, 由分部积分以及Gagliardo-Nirenberg不等式有

$ \begin{eqnarray} \int \triangle {\bf u}\cdot\dot {\bf u} {\rm d} {\bf x}& = &\int \triangle {\bf u}\cdot ( {\bf u}_t+ {\bf u}\cdot \nabla {\bf u}){\rm d} {\bf x}\\ & = &-\frac12\frac{\rm d}{{\rm d}t}\int | \nabla {\bf u}|^2{\rm d} {\bf x}-\int \partial_i {\bf u}^j \partial_i( {\bf u}^k \partial_k {\bf u}^j){\rm d} {\bf x} \\ &\leq & -\frac12\frac{\rm d}{{\rm d}t}\int | \nabla {\bf u}|^2{\rm d} {\bf x} +C\int | \nabla {\bf u}|^3{\rm d} {\bf x} \\ &\leq & -\frac12\frac{\rm d}{{\rm d}t}\| \nabla {\bf u}\|_{L^2}^2+C\| \nabla {\bf u}\|_{L^2}^2\| \nabla^2 {\bf u}\| _{L^2}, \end{eqnarray} $

对于第二项, 由有界均振空间与哈代空间的对偶性可知

$ \begin{eqnarray} -\int \nabla \pi \cdot\dot {\bf u} {\rm d} {\bf x}& = &-\int \nabla\pi\cdot( {\bf u}_t+ {\bf u}\cdot \nabla {\bf u}) {\rm d} {\bf x} = \int\pi \partial_i {\bf u}^j \partial_j {\bf u}^i {\rm d} {\bf x} \\ &\leq & C\|\pi\|_{BMO}\| \partial_i {\bf u}^j \partial_j {\bf u}^i\|_{\mathcal{H}^1} \leq C\| \nabla\pi\|_{L^2}\| \nabla {\bf u}\|_{L^2}^2, \end{eqnarray} $

上式第二个不等号用到了(2.8)和(2.9)式.

第三项关于磁场的估计, 由假设(5.29)有

$ \begin{eqnarray} -\frac12\int \nabla| {\bf H}|^2\cdot\dot {\bf u} {\rm d} {\bf x} = \frac12\int | {\bf H}|^2 \partial_i {\bf u}^j \partial_j {\bf u}^i {\rm d} {\bf x} \leq C\| \nabla {\bf u}\|_{L^2}^2, \end{eqnarray} $

最后一项, 利用方程(1.1)$ _3 $, 可得

$ \begin{eqnarray} \int( {\bf H}\cdot \nabla) {\bf H}\cdot\dot {\bf u} {\rm d} {\bf x} & = &\int ( {\bf H}\cdot \nabla) {\bf H}\cdot {\bf u}_t {\rm d} {\bf x} +\int ( {\bf H}\cdot \nabla) {\bf H}\cdot( {\bf u}\cdot \nabla) {\bf u} {\rm d} {\bf x} \\ & = &-\frac{\rm d}{{\rm d}t}\int {\bf H}\cdot \nabla {\bf u}\cdot {\bf H} {\rm d} {\bf x} +\int {\bf H}_t\cdot \nabla {\bf u}\cdot {\bf H} {\rm d} {\bf x}+\int {\bf H}\cdot \nabla {\bf u}\cdot {\bf H}_t {\rm d} {\bf x} \\ &&+\int ( {\bf H}\cdot \nabla) {\bf H}\cdot( {\bf u}\cdot \nabla) {\bf u} {\rm d} {\bf x} \\ &\leq& -\frac{\rm d}{{\rm d}t}\int {\bf H}\cdot \nabla {\bf u}\cdot {\bf H} {\rm d} {\bf x} +C\int| {\bf H}|^2| \nabla {\bf u}|^2{\rm d} {\bf x}. \end{eqnarray} $

把上述(5.32)–(5.35)式的估计代入(5.31)式, 由(5.29)式可以推出

$ \begin{eqnarray} &&\frac{\mu}2\frac{\rm d}{{\rm d}t}\| \nabla {\bf u}\|_{L^2}^2+\frac{\rm d}{{\rm d}t}\int {\bf H}\cdot \nabla {\bf u}\cdot {\bf H} {\rm d} {\bf x}+\|\sqrt \varrho\dot {\bf u} \|_{L^2}^2 \\ &\leq& C\left(1+\| \nabla^2 {\bf u}\| _{L^2}+\| \nabla\pi\|_{L^2}\right)\| \nabla {\bf u}\|_{L^2}^2 \\ &\leq & C\left(1+\| \nabla {\bf H}\|_{L^r}\right)\| \nabla {\bf u}\|_{L^2}^2+ C\| \nabla {\bf u}\|_{L^2}^4+\frac12\|\sqrt \varrho\dot {\bf u} \|_{L^2}^2, \end{eqnarray} $

结合(3.5)和(5.29)式可知(5.30)式成立.引理5.1证毕.

引理5.2  假设(5.29)式成立, 对$ 0\leq T\leq T^* $以及常数$ C > 0 $, 有

$ \begin{equation} \sup\limits_{t\in [0, T]}\left(\|\sqrt \varrho\dot {\bf u}\|_{L^2}^2+\| \nabla {\bf H}\|_{L^2}^2\right)+\int_0^T \mu\| \nabla\dot {\bf u}\|_{L^2}^2 {\rm d}t \leq C. \end{equation} $

  把算子$ \dot {\bf u}^j [\frac{\partial}{\partial t} + {\bf u}\cdot \nabla] $作用于$ {\bf u} $的第$ j $个分量, 然后对$ j $求和, 并在$ {\mathbb{R}}^2 $上分部积分, 可得

$ \begin{eqnarray} \frac12\frac{\rm d}{{\rm d}t}\left(\int \varrho|\dot {\bf u}|^2{\rm d} {\bf x}\right) +\mu\| \nabla\dot {\bf u}\|_{L^2}^2 & = &-\mu\int \partial_i( \partial_i {\bf u}\cdot \nabla {\bf u}^j)\dot {\bf u}^j {\rm d} {\bf x} -\mu\int {\mbox{div}}( \partial_i {\bf u} \partial_i {\bf u}^j)\dot {\bf u}^j {\rm d} {\bf x} \\ &&-\int(\dot {\bf u}^j \partial_t \partial_j\pi+\dot {\bf u}^j( {\bf u}\cdot \nabla) \partial_j\pi){\rm d} {\bf x} \\ &&-\frac12\int\dot {\bf u}^j\left( \partial_t( \partial_j| {\bf H}|^2)+ {\bf u}\cdot \nabla( \partial_j| {\bf H}|^2) \right){\rm d} {\bf x} \\ &&+\int\dot {\bf u}^j\left( \partial_t( {\bf H}\cdot \nabla {\bf H}^j ) + {\bf u}\cdot \nabla( {\bf H}\cdot \nabla {\bf H}^j)\right){\rm d} {\bf x} \\ & = &\sum\limits_{i = 1}^5K_i. \end{eqnarray} $

下面对(5.38)右端的每一项进行分别估计.首先, 由文献[29, Lemma 3.3], 有

$ \begin{equation} \sum\limits_{i = 1}^3K_i\leq \frac{\rm d}{{\rm d}t}\int\pi \partial_j {\bf u}^i \partial_i {\bf u}^j {\rm d} {\bf x} +C\left(\|\pi\|_{L^4}^4 +\| \nabla {\bf u}\|_{L^4}^4\right) +\frac{\mu}{6}\| \nabla\dot {\bf u}\|_{L^2}^2. \end{equation} $

根据方程(1.1)$ _3 $和(1.1)$ _4 $, 由分部积分可得

$ \begin{eqnarray} K_4& = &\int \partial_j\dot {\bf u}^j {\bf H}\cdot {\bf H}_t {\rm d} {\bf x}-\frac12\int\dot {\bf u}^j {\bf u}^i \partial_i \partial_j| {\bf H}|^2{\rm d} {\bf x} \\ & = &\int \partial_j\dot {\bf u}^j {\bf H} \cdot\left( {\bf H}\cdot \nabla {\bf u}- {\bf u}\cdot \nabla {\bf H} \right){\rm d} {\bf x}+\frac12\int {\bf u}^i \partial_i\dot {\bf u}^j \partial_j| {\bf H}|^2{\rm d} {\bf x} \\ & = & \int {\mbox{div}}\dot {\bf u} {\bf H}\cdot( {\bf H}\cdot \nabla {\bf u}){\rm d} {\bf x}-\frac12 \int \partial_j\dot {\bf u}^j {\bf u}^i \partial_i| {\bf H}|^2{\rm d} {\bf x}+\frac12\int {\bf u}^i \partial_i\dot {\bf u}^j \partial_j| {\bf H}|^2{\rm d} {\bf x} \\ &\leq & C\int | \nabla {\bf u}|^3| {\bf H}|^2{\rm d} {\bf x}+C\int | \nabla {\bf u}|| \nabla\dot {\bf u}|| {\bf H}|^2{\rm d} {\bf x} \\ &\leq & C\| \nabla {\bf u}\|_{L^2}^2+C\| \nabla {\bf u}\|_{L^4}^4 +\frac{\mu}{6}\| \nabla\dot {\bf u}\|_{L^2}^2. \end{eqnarray} $

类似的

$ \begin{equation} K_5\leq C\| \nabla {\bf u}\|_{L^2}^2+C\| \nabla {\bf u}\|_{L^4}^4 +\frac{\mu}{6}\| \nabla\dot {\bf u}\|_{L^2}^2. \end{equation} $

把估计(5.39)–(5.41)代入(5.38)式, 则有

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\|\sqrt \varrho\dot {\bf u}\|_{L^2}^2 +\mu\| \nabla\dot {\bf u}\|_{L^2}^2 \\ &\leq & 2\frac{\rm d}{{\rm d}t}\int\pi \partial_j {\bf u}^i \partial_i {\bf u}^j {\rm d} {\bf x}+C\left(\|\pi\|_{L^4}^4 +\| \nabla {\bf u}\|_{L^4}^4 +\| \nabla {\bf u}\|_{L^2}^2\right) \\ &\leq &2\frac{\rm d}{{\rm d}t}\int\pi \partial_j {\bf u}^i \partial_i {\bf u}^j {\rm d} {\bf x} +C\left(1+\| \nabla\pi\|_{L^\frac43}^4+\| \nabla^2 {\bf u}\|_{L^\frac43}^4\right) \\ &\leq &2\frac{\rm d}{{\rm d}t}\int\pi \partial_j {\bf u}^i \partial_i {\bf u}^j {\rm d} {\bf x} +C\left(1+ \| \varrho\|_{L^2}^2\|\sqrt \varrho\dot {\bf u}\|_{L^2}^4+\| {\bf H}\|_{L^\infty}^4 \| {\bf H}\|_{L^2}^2\| \nabla {\bf H}\|_{L^2}^2\right), \end{eqnarray} $

上述估计用到了(2.7)式以及嵌入不等式.

下面对方程(1.1)$ _3 $关于空间变量求导, 乘以$ \partial_i {\bf H} $, 在$ {\mathbb{R}}^2 $上积分, 由(5.29), (5.30)和(2.7)式可得

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}\| \nabla {\bf H}\|_{L^2}^2&\leq & C\int | \nabla {\bf u}|| \nabla {\bf H}|^2{\rm d} {\bf x} +C\int | {\bf H}|| \nabla {\bf H}|| \nabla^2 {\bf u}|{\rm d} {\bf x} \\ &\leq &C\| \nabla {\bf H}\|_{L^2}\| \nabla {\bf H}\|_{L^r}\| \nabla {\bf u}\|_{L^\frac{2r}{r-2}} +C\| {\bf H}\|_{L^\infty}\| \nabla {\bf H}\|_{L^2}\| \nabla^2 {\bf u}\|_{L^2} \\ &\leq&C \| \nabla {\bf H}\|_{L^2}\| \nabla {\bf H}\|_{L^r}\| \nabla {\bf u}\|_{L^2}^{1-\frac{2}{r}} \| \nabla^2 {\bf u}\|_{L^2}^{\frac2r}+C\| \nabla {\bf H}\|_{L^2}\left(\| \nabla {\bf H}\|_{L^2} +\|\sqrt \varrho\dot {\bf u}\|_{L^2}\right) \\ &\leq&C\left(1+\| \nabla {\bf H}\|_{L^r}\right)\left(1+\| \nabla {\bf H}\|_{L^2}^2+\|\sqrt \varrho\dot {\bf u}\|_{L^2}^2 \right). \end{eqnarray} $

结合(5.42)和(5.43)式, 由(5.29), (5.30)和(2.7)式, 以及

可得(5.37)式.引理5.2得证.

同文献[6, Lemma 5.3]同样的推导, 有如下引理.

引理5.3  设(5.29)式成立, 对任意的$ 0\leq T\leq T^* $以及常数$ C > 0 $, 有

$ \begin{equation} \sup\limits_{t\in [0, T]}\left(\| \varrho\bar {\bf x}^a\|_{L^1\cap H^1\cap W^{1, q}} +\| {\bf H}\bar {\bf x}^a\|_{H^1\cap W^{1, q}}\right) \leq C. \end{equation} $

最后, 由(5.30), (5.37)以及(5.44)式的一系列先验估计, 可以得到引理4.1–4.4的高阶估计, 这些高阶估计说明局部解就是经典解.

引理5.4  设(5.29)式成立, 对任意的$ 0\leq T\leq T^* $以及常数$ C > 0 $, 有

$ \begin{eqnarray} &&\sup\limits_{0\leq t\leq T}\Big(\|\bar {\bf x}^{\delta_0} \nabla^2 \varrho\|_{L^2} +\|\bar {\bf x}^{\delta_0} \nabla^2P( \varrho)\|_{L^2}+\|\bar {\bf x}^{\delta_0} \nabla^2 {\bf H}\|_{L^2} +t\| \nabla {\bf u}_t\|_{L^2}^2+\| \nabla^2 \varrho\|_{L^q} \\ &&+\| \nabla^2P( \varrho)\|_{L^q} +\| \nabla^2 {\bf H}\|_{L^q}+t\| \nabla^3 {\bf u}\|_{L^2\cap L^q}+t\| \nabla^2 {\bf u}_t\|_{H^1} +t\| \nabla^2( \varrho {\bf u})\|_{L^{(q+2)/2}}\Big) \\ &&+\int_0^{T}\left( t\|\sqrt \varrho {\bf u}_{tt}\|_{L^2}^2 +t\| \nabla^2 {\bf u}_{t} \|_{L^2}^2+t^2\| \nabla {\bf u}_{tt}\| _{L^2}^2+t^2 \|\bar {\bf x}^{-1} {\bf u}_{tt}\|_{L^2}^2\right){\rm d}t\leq C. \end{eqnarray} $

有了上述一系列的估计, 定理1.3就可以得到证明.事实上, 在引理5.1–5.4的估计下, 可以得到函数

满足所有(1.5)和(1.8)式中出现的条件.则由定理1.2可以把经典解延拓到$ t> T^* $.这与定理1.3中所说$ T^* $是经典解的最大存在时间相矛盾.

参考文献

Antontsev S N, Kazhikov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam: North-Holland, 1990

[本文引用: 1]

Bian D , Guo B .

Well-posedness in critical spaces for the full compressible MHD equations

Acta Math Sci, 2013, 33B (4): 273- 296

URL     [本文引用: 1]

Cabannes H . Theoretical Magnetofluiddynamics. New York: Academic Press, 1970

[本文引用: 2]

Chandrasekhar S . Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press, 1961

[本文引用: 1]

Chemin J Y , McCormick D S , Robinson J C , Rodrigo J L .

Local existence for the non-resistive MHD equations in Besov spaces

Adv Math, 2016, 286: 1- 31

DOI:10.1016/j.aim.2015.09.004      [本文引用: 2]

Chen M , Zang A .

On classical solutions to the Cauchy problem of the 2D compressible non-resistive MHD equations with vacuum

Nonlinearity, 2017, 30: 3637- 3675

DOI:10.1088/1361-6544/aa7e97      [本文引用: 3]

Chen Q , Tan Z , Wang Y .

Strong solutions to the incompressible magnetohydrodynamic equations

Math Meth Appl Sci, 2011, 34: 94- 107

DOI:10.1002/mma.1338      [本文引用: 3]

Cho Y , Kim H .

Unique solvability for the density-dependent Navier-Stokes equations

Nonlinear Anal, 2004, 59: 465- 489

DOI:10.1016/j.na.2004.07.020      [本文引用: 1]

Choe H , Kim H .

Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids

Comm Partial Differential Equations, 2003, 28: 1183- 1201

DOI:10.1081/PDE-120021191      [本文引用: 2]

Craig W , Huang X , Wang Y .

Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations

J Math Fluid Mech, 2013, 15: 747- 758

DOI:10.1007/s00021-013-0133-6      [本文引用: 1]

Stein Elias M . Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993

[本文引用: 1]

Fefferman C L , McCormick D S , Robinson J C , Rodrigo J L .

Higher order commutator estimates and local existence for the non-resistive MHD equations and relatedmodels

Journal of Functional Analysis, 2014, 267: 1035- 1056

DOI:10.1016/j.jfa.2014.03.021      [本文引用: 2]

Fefferman C L , McCormick D S , Robinson J C , Rodrigo J L .

Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces

Arch Rational Mech Anal, 2017, 223: 677- 691

DOI:10.1007/s00205-016-1042-7     

Freidberg J P .

Ideal magnetohydrodynamic theory of magnetic fusion systems

Rev Modern Phys, 1982, 54: 801- 902

DOI:10.1103/RevModPhys.54.801      [本文引用: 1]

Galdi G P . An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problem. New York: Springer, 2011

[本文引用: 1]

Huang X D, Li J. Global well-posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data. 2012, https://arxiv.org/abs/1207.3746

[本文引用: 2]

Huang X , Wang Y .

Global strong solution to the 2D nonhomogeneous incompressible MHD system

J Differential Equations, 2013, 254: 511- 517

DOI:10.1016/j.jde.2012.08.029      [本文引用: 3]

Huang X , Wang Y .

Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity

J Differential Equations, 2015, 259: 1606- 1627

DOI:10.1016/j.jde.2015.03.008      [本文引用: 1]

Jiu Q , Niu D .

Mathematical results related to a two-dimensional magnetohydrodynamic equations

Acta Math Sci, 2006, 26B (4): 744- 756

URL     [本文引用: 1]

Kazhikov A V .

Resolution of boundary value problems for nonhomogeneous viscous fluids

Dokl Akad Nauk, 1974, 216: 1008- 1010

URL     [本文引用: 1]

Kim H .

A blow-up criterion for the nonhomogeneous nonhomogeneous incompressible Navier-Stokes equations

SIAM J Math Anal, 2006, 37: 1417- 1434

DOI:10.1137/S0036141004442197      [本文引用: 1]

Kulikovskiy A G , Lyubimov G A . Magnetohydrodynamics. Reading, MA: Addison-Wesley, 1965

[本文引用: 2]

Li J , Liang Z .

On local classical solutions to the cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum

J Math Pures Appl, 2014, 102: 640- 671

DOI:10.1016/j.matpur.2014.02.001      [本文引用: 3]

Liang Z .

Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids

J Differential Equations, 2015, 7: 2633- 2654

URL     [本文引用: 4]

Lin F , Xu L , Zhang P .

Global small solutions to 2D incompresible MHD system

J Differ Equa, 2015, 259: 5440- 5485

DOI:10.1016/j.jde.2015.06.034      [本文引用: 2]

Lions P L . Mathematical Topics in Fluid Mechanics, Vol I: Incompressible Models. Oxford: Oxford University Press, 1996

[本文引用: 2]

Lü B, Xu Z, Zhong X. On local strong solutions to the Cauchy problem of two-dimensional density-dependent Magnetohydrodynamic equations with vacuum. 2015, https://arxiv.org/abs/1506.02156

[本文引用: 5]

B , Xu Z , Zhong X .

Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Magnetohydrodynamic equations with vacuum

J Math Pures Appl, 2017, 108 (1): 41- 62

DOI:10.1016/j.matpur.2016.10.009      [本文引用: 3]

Lü B, Shi X, Zhong X. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum. 2015, https://arxiv.org/abs/1506.03143

[本文引用: 5]

Pan R, Zhou Y, Zhu Y. Global classical solutions of 3D viscous MHD system without magnetic diffusion on periodic boxes. 2015, https://arxiv.org/abs/1503.05644

[本文引用: 1]

Ren X , Wu J , Xiang Z , Zhang Z .

Global existence and decay of smooth solution for the 2D MHD equations without magnetic diffusion

J Funct Anal, 2014, 267: 503- 541

DOI:10.1016/j.jfa.2014.04.020      [本文引用: 2]

Si X, Ye X. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients. Z Angew Math Phys, 2016, 67, Article number: 126

[本文引用: 1]

Zhang J .

Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient

J Differ Equa, 2015, 259: 1722- 1742

DOI:10.1016/j.jde.2015.03.011      [本文引用: 1]

Zhou Y , Fan J .

A regularity criterion for the 2D MHD system with zero magnetic diffusivity

J Math Anal Appl, 2011, 378: 169- 172

DOI:10.1016/j.jmaa.2011.01.014      [本文引用: 1]

/