数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 100-125.
收稿日期:
2019-12-12
出版日期:
2021-02-26
发布日期:
2021-01-29
通讯作者:
苏文火
E-mail:suwenhuo@jxycu.edu.cn
基金资助:
Mingtao Chen1,Wenhuo Su2,*(),Aibin Zang2
Received:
2019-12-12
Online:
2021-02-26
Published:
2021-01-29
Contact:
Wenhuo Su
E-mail:suwenhuo@jxycu.edu.cn
Supported by:
摘要:
该文讨论了在真空远场的密度条件下,二维不可压零磁耗散磁流体力学方程组柯西问题的局部适定性.在初始密度和磁场具有一定的衰减性时,证明了磁流体方程具有唯一的局部强解.当初值满足兼容性条件和适当的正则性条件时,该强解就是经典解.除此之外,文中还给出了一个仅与磁场有关的爆破准则.
中图分类号:
陈明涛,苏文火,臧爱彬. 带真空无磁扩散不可压磁流体方程柯西问题的局部适定性[J]. 数学物理学报, 2021, 41(1): 100-125.
Mingtao Chen,Wenhuo Su,Aibin Zang. Local well-Posedness for the Cauchy Problem of 2D Nonhomogeneous Incompressible and Non-Resistive MHD Equations with Vacuum[J]. Acta mathematica scientia,Series A, 2021, 41(1): 100-125.
1 | Antontsev S N, Kazhikov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam: North-Holland, 1990 |
2 | Bian D , Guo B . Well-posedness in critical spaces for the full compressible MHD equations. Acta Math Sci, 2013, 33B (4): 273- 296 |
3 | Cabannes H . Theoretical Magnetofluiddynamics. New York: Academic Press, 1970 |
4 | Chandrasekhar S . Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press, 1961 |
5 |
Chemin J Y , McCormick D S , Robinson J C , Rodrigo J L . Local existence for the non-resistive MHD equations in Besov spaces. Adv Math, 2016, 286: 1- 31
doi: 10.1016/j.aim.2015.09.004 |
6 |
Chen M , Zang A . On classical solutions to the Cauchy problem of the 2D compressible non-resistive MHD equations with vacuum. Nonlinearity, 2017, 30: 3637- 3675
doi: 10.1088/1361-6544/aa7e97 |
7 |
Chen Q , Tan Z , Wang Y . Strong solutions to the incompressible magnetohydrodynamic equations. Math Meth Appl Sci, 2011, 34: 94- 107
doi: 10.1002/mma.1338 |
8 |
Cho Y , Kim H . Unique solvability for the density-dependent Navier-Stokes equations. Nonlinear Anal, 2004, 59: 465- 489
doi: 10.1016/j.na.2004.07.020 |
9 |
Choe H , Kim H . Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Comm Partial Differential Equations, 2003, 28: 1183- 1201
doi: 10.1081/PDE-120021191 |
10 |
Craig W , Huang X , Wang Y . Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations. J Math Fluid Mech, 2013, 15: 747- 758
doi: 10.1007/s00021-013-0133-6 |
11 | Stein Elias M . Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993 |
12 |
Fefferman C L , McCormick D S , Robinson J C , Rodrigo J L . Higher order commutator estimates and local existence for the non-resistive MHD equations and relatedmodels. Journal of Functional Analysis, 2014, 267: 1035- 1056
doi: 10.1016/j.jfa.2014.03.021 |
13 |
Fefferman C L , McCormick D S , Robinson J C , Rodrigo J L . Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch Rational Mech Anal, 2017, 223: 677- 691
doi: 10.1007/s00205-016-1042-7 |
14 |
Freidberg J P . Ideal magnetohydrodynamic theory of magnetic fusion systems. Rev Modern Phys, 1982, 54: 801- 902
doi: 10.1103/RevModPhys.54.801 |
15 | Galdi G P . An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problem. New York: Springer, 2011 |
16 | Huang X D, Li J. Global well-posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data. 2012, https://arxiv.org/abs/1207.3746 |
17 |
Huang X , Wang Y . Global strong solution to the 2D nonhomogeneous incompressible MHD system. J Differential Equations, 2013, 254: 511- 517
doi: 10.1016/j.jde.2012.08.029 |
18 |
Huang X , Wang Y . Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity. J Differential Equations, 2015, 259: 1606- 1627
doi: 10.1016/j.jde.2015.03.008 |
19 | Jiu Q , Niu D . Mathematical results related to a two-dimensional magnetohydrodynamic equations. Acta Math Sci, 2006, 26B (4): 744- 756 |
20 | Kazhikov A V . Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl Akad Nauk, 1974, 216: 1008- 1010 |
21 |
Kim H . A blow-up criterion for the nonhomogeneous nonhomogeneous incompressible Navier-Stokes equations. SIAM J Math Anal, 2006, 37: 1417- 1434
doi: 10.1137/S0036141004442197 |
22 | Kulikovskiy A G , Lyubimov G A . Magnetohydrodynamics. Reading, MA: Addison-Wesley, 1965 |
23 |
Li J , Liang Z . On local classical solutions to the cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum. J Math Pures Appl, 2014, 102: 640- 671
doi: 10.1016/j.matpur.2014.02.001 |
24 | Liang Z . Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids. J Differential Equations, 2015, 7: 2633- 2654 |
25 |
Lin F , Xu L , Zhang P . Global small solutions to 2D incompresible MHD system. J Differ Equa, 2015, 259: 5440- 5485
doi: 10.1016/j.jde.2015.06.034 |
26 | Lions P L . Mathematical Topics in Fluid Mechanics, Vol I: Incompressible Models. Oxford: Oxford University Press, 1996 |
27 | Lü B, Xu Z, Zhong X. On local strong solutions to the Cauchy problem of two-dimensional density-dependent Magnetohydrodynamic equations with vacuum. 2015, https://arxiv.org/abs/1506.02156 |
28 |
Lü B , Xu Z , Zhong X . Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Magnetohydrodynamic equations with vacuum. J Math Pures Appl, 2017, 108 (1): 41- 62
doi: 10.1016/j.matpur.2016.10.009 |
29 | Lü B, Shi X, Zhong X. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum. 2015, https://arxiv.org/abs/1506.03143 |
30 | Pan R, Zhou Y, Zhu Y. Global classical solutions of 3D viscous MHD system without magnetic diffusion on periodic boxes. 2015, https://arxiv.org/abs/1503.05644 |
31 |
Ren X , Wu J , Xiang Z , Zhang Z . Global existence and decay of smooth solution for the 2D MHD equations without magnetic diffusion. J Funct Anal, 2014, 267: 503- 541
doi: 10.1016/j.jfa.2014.04.020 |
32 | Si X, Ye X. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients. Z Angew Math Phys, 2016, 67, Article number: 126 |
33 |
Zhang J . Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient. J Differ Equa, 2015, 259: 1722- 1742
doi: 10.1016/j.jde.2015.03.011 |
34 |
Zhou Y , Fan J . A regularity criterion for the 2D MHD system with zero magnetic diffusivity. J Math Anal Appl, 2011, 378: 169- 172
doi: 10.1016/j.jmaa.2011.01.014 |
[1] | 张庆玲,巴英. 带群集耗散项的零压流方程的扰动黎曼问题[J]. 数学物理学报, 2020, 40(1): 49-62. |
[2] | 龙群飞,陈建清. 一类带梯度依赖势和源的粘性Cahn-Hilliard方程的爆破现象[J]. 数学物理学报, 2019, 39(3): 510-517. |
[3] | 尚朝阳. 不可压缩磁流体方程组在Besov空间中的爆破准则[J]. 数学物理学报, 2019, 39(1): 67-80. |
[4] | 林娇燕. 颗粒与流体混合物模型解的一致估计[J]. 数学物理学报, 2018, 38(3): 565-570. |
[5] | 朱旭生, 李芳娥. 带非线性阻尼项的三维可压缩欧拉方程组的整体解[J]. 数学物理学报, 2014, 34(5): 1111-1122. |
[6] | 刘健, 连汝续, 钱茂福. 双极Navier-Stokes-Poisson方程整体解的存在性[J]. 数学物理学报, 2014, 34(4): 960-976. |
[7] | 张婷婷. Aw-Rascle 模型Riemann 解的稳定性[J]. 数学物理学报, 2013, 33(2): 230-241. |
[8] | 郭艾. 一类非线性积分偏微分方程初边值问题的整体解[J]. 数学物理学报, 1999, 19(1): 30-38. |
[9] | 朱庆国. 真空Einstein方程所容许的群及方程的局部不变解[J]. 数学物理学报, 1998, 18(S1): 35-43. |
[10] | 陆云光, 宣本金. 一组双曲型方程组的Riemann问题[J]. 数学物理学报, 1996, 16(2): 187-194. |
[11] | 崔尚斌. 高阶非线性抛物型偏微分方程组的初值问题[J]. 数学物理学报, 1995, 15(2): 209-216. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|