数学物理学报, 2020, 40(5): 1192-1203 doi:

论文

带有积分边界条件的奇异摄动边值问题的渐近解

武利猛,1, 倪明康2, 李素红1, 陆海波3

Asymptotic Solution of Singularly Perturbed Boundary Value Problem with Integral Boundary Condition

Wu Limeng,1, Ni Mingkang2, Li Suhong1, Lu Haibo3

收稿日期: 2019-09-27  

基金资助: 国家自然科学基金.  11871217
国家自然科学基金.  11901152
国家重点研发计划.  2019YFC1407903

Received: 2019-09-27  

Fund supported: the NSFC.  11871217
the NSFC.  11901152
the NKRDPC.  2019YFC1407903

作者简介 About authors

武利猛,E-mail:xiaovikdo@163.com , E-mail:xiaovikdo@163.com

摘要

研究了一类带有积分边界条件的奇异摄动边值问题,利用奇异摄动几何理论证明了阶梯状空间对照结构解的存在性.基于解的结构,利用边界层函数法构造了原问题一致有效的形式渐近解.通过一个例子,验证了主要结果.

关键词: 奇异摄动 ; 渐近解 ; 边界层函数法

Abstract

In this paper, we consider a class of singularly perturbed boundary value problem with integral boundary condition. Based on the singularly perturbed geometric theory, the existence of step-like contrast structure solution is proved. By virtue of the structure of the solution, we construct the uniformly valid formal asymptotic solution by the boundary layer function method. Finally, an example is given to show the main result.

Keywords: Singular perturbation ; Asymptotic solution ; Boundary layer function method

PDF (399KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

武利猛, 倪明康, 李素红, 陆海波. 带有积分边界条件的奇异摄动边值问题的渐近解. 数学物理学报[J], 2020, 40(5): 1192-1203 doi:

Wu Limeng, Ni Mingkang, Li Suhong, Lu Haibo. Asymptotic Solution of Singularly Perturbed Boundary Value Problem with Integral Boundary Condition. Acta Mathematica Scientia[J], 2020, 40(5): 1192-1203 doi:

1 引言

奇异摄动理论和方法源于对天体力学的研究,是处理非线性问题的重要工具,在许多方面都有重要应用,如流体动力学、最优控制和空气动力学[1-6].随着奇异摄动理论的不断发展,出现了很多新方向和新方法.在一些热传导、半导体[7]和生物医学[8]等问题的研究过程中,学者们发现初始时刻和终端时刻的值不是固定的,出现了可移动边界,其中的一种情形为积分边界[9]. Cakir和Amiraliyev[10]考虑了带有积分边界条件的奇异摄动边值问题

利用有限差分的方法,构造了具有边界层的数值解.文献[11]中,谢峰等研究了一类含有积分边界条件的二阶奇异摄动边值问题,利用微分不等式的理论,证明了边值问题空间对照结构解的存在性,并构造了形式渐近解.文献[12]中,作者考虑了二阶非线性奇异摄动边值问题

针对上述积分边界问题,借助于边界层函数法和微分不等式技巧,构造了零阶渐近解,并证明了解的存在性.因为积分边界的引入使得所讨论问题变得复杂,文献[11-12]中,作者仅考虑了含有快变量的系统,没有考虑慢变量.奇异摄动系统也称为快-慢系统,因此对于含有积分边界条件的奇异摄动快-慢系统的研究是十分有意义的.

通过研究发现,关于奇异摄动空间对照结构的研究成果已非常丰富,可参见文献[13-14]及其参考文献,关于带有积分边界条件的奇异摄动问题中的空间对照结构至今未见报道.难点在于已有参考文献中的方法已不再适用,需要运用几何方法进行研究.关于奇异摄动几何方法的研究可参看文献[15-21],学者们利用奇异摄动几何理论讨论了解的存在性、唯一性、孤立波解、同异宿轨的存在性等等.

本文将运用几何理论[13]研究一类带有积分边界条件的奇异摄动边值问题,不但证明了空间对照结构解的存在性,而且构造了一致有效的形式渐近解.

2 奇异摄动问题

考虑带有积分边界条件的奇异摄动边值问题

$ \begin{equation} \left\{\begin{array}{ll} { } \mu^2\frac{{\rm d}^2y}{{\rm d}t^2} = f(x, y, t), \quad t\in[0, 1], \\ [3mm] { } \frac{{\rm d}x}{{\rm d}t} = g(x, y, t), \\ { } x(0) = x^0, \quad y(0) = y^{0}+\int^{1}_{0}h_{1}(y(s, \mu)){\rm d}s\, , \quad y(1) = y^{1}+\int^{1}_{0}h_{2}(y(s, \mu)){\rm d}s, \end{array}\right. \end{equation} $

其中$ \mu>0 $是一小参数, $ x, \ y\in\mathbb{R} $分别是慢变量和快变量.

由于积分边界条件的引入,使得问题(2.1)的讨论要比常规固定变界的情形要复杂的多,为此将方程(2.1)转化为如下等价的奇异摄动边值问题

$ \begin{equation} \left\{\begin{array}{ll} { } \mu \frac{{\rm d}y}{{\rm d}t} = z, { } \mu \frac{{\rm d}z}{{\rm d}t} = f(x, y, t), \quad\\ { } \frac{{\rm d}x}{{\rm d}t} = g(x, y, t), { } \frac{{\rm d}k_{1}}{{\rm d}t} = h_{1}(y), \quad\\ { } \frac{{\rm d}k_{2}}{{\rm d}t} = h_{2}(y), \quad x(0) = x^{0}, \\ y(0) = y^{0}-k_{1}(0)\, , \quad k_{1}(1) = 0, \quad k_{2}(0) = 0, \quad y(1) = y^{1}+k_{2}(1). \end{array}\right. \end{equation} $

对所提问题(2.1)作如下假设

(H$ _1) $  函数$ f(x, y, t), \ g(x, y, t) $$ h_{i}(y) $在区域$ D = \{(x, y, t)|\mid x \mid \leq A, \ \mid y\mid\leq A, 0\leq t\leq 1\} $上充分光滑,其中$ A $是一正常数, $ i = 1, 2 $.

(H$ _2) $  方程$ f(\bar{x}, \bar{y}, t) = 0 $存在两个孤立根$ \bar{y} = \alpha_{1}(\bar{x}, t) $$ \bar{y} = \alpha_{2}(\bar{x}, t) $,同时左初值问题

和右初值问题

分别存在唯一解$ \varphi_{1}(t) $$ \varphi_{2}(t) $,其中$ \varphi_{1}(t) $$ \varphi_{2}(t) $$ t_{0}\in (0, 1) $横截相交,同时满足$ f_{y}(\varphi_{i}(t), \alpha_{i}(\varphi_{i}(t)), t)>0, \ t\in[0, 1], \ i = 1, 2 $.

3 解的存在性

本节将利用文献[13, 15]的主要结果证明问题(2.1)空间对照结构解的存在性.首先,研究(2.2)式的连接问题

$ \begin{equation} \left\{\begin{array}{ll} { } \mu \frac{{\rm d}y}{{\rm d}\xi} = z, \quad \mu \frac{{\rm d}z}{{\rm d}\xi} = f(x, y, t), \\ { } \frac{{\rm d}x}{{\rm d}\xi} = g(x, y, t), {\quad} \frac{{\rm d}k_{1}}{{\rm d}\xi} = h_{1}(y), \quad \frac{{\rm d}k_{2}}{{\rm d}\xi} = h_{2}(y), \quad \frac{{\rm d}t}{{\rm d}\xi} = 1, \end{array}\right. \end{equation} $

边值条件可改写为

$ \tau = \xi/\mu $,连接问题(3.1)可改写为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}y}{{\rm d}\tau} = z, \quad \frac{{\rm d}z}{{\rm d}\tau} = f(x, y, t), \\ { } \frac{{\rm d}x}{{\rm d}\tau} = \mu g(x, y, t), \quad \frac{{\rm d}k_{1}}{{\rm d}\tau} = \mu h_{1}(y), \quad \frac{{\rm d}k_{2}}{{\rm d}\tau} = \mu h_{2}(y), \quad \frac{{\rm d}t}{{\rm d}\tau} = \mu . \end{array}\right. \end{equation} $

在(3.1)和(3.2)式中分别令$ \mu = 0 $,可得极限慢系统

$ \begin{equation} \left\{\begin{array}{ll} 0 = z, \quad 0 = f(x, y, t), \\ { } \frac{{\rm d}x}{{\rm d}\xi} = g(x, y, t), \quad \frac{{\rm d}k_{1}}{{\rm d}\xi} = h_{1}(y), \quad \frac{{\rm d}k_{2}}{{\rm d}\xi} = h_{2}(y), \quad \frac{{\rm d}t}{{\rm d}\xi} = 1 \end{array}\right. \end{equation} $

和极限快系统

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}y}{{\rm d}\tau} = z, \quad \frac{{\rm d}z}{{\rm d}\tau} = f(x, y, t), \\ { }\frac{{\rm d}x}{{\rm d}\tau} = 0, \quad \frac{{\rm d}k_{1}}{{\rm d}\tau} = 0, \quad \frac{{\rm d}k_{2}}{{\rm d}\tau} = 0, \quad \frac{{\rm d}t}{{\rm d}\tau} = 0. \end{array}\right. \end{equation} $

由假设(H$ _{2} $),可知临界流形为

$ \dim(S_{i}) = 4 $,系统(3.4)对应的线性系统在临界流形上有4个零根,一个正根和一个负根,从而可知$ S_{i} $是法向双曲的, $ i = 1, 2 $.因此,存在连接$ M_1(\alpha_{1}(\varphi_{1}(t)), 0) $$ M_2(\alpha_{2}(\varphi_{2}(t)), 0) $的异宿轨道.

(H$ _{3} $)  稳定流形$ W^{s}(S_1) $$ B_{0}^{L} $横截相交,不稳定流形$ W^{u}(S_1) $和稳定流形$ W^{s}(S_2) $横截相交,不稳定流形$ W^{u}(S_2) $$ B_{0}^{R} $横截相交,其中$ W^{s}(S_i) = \bigcup\limits_{p\in S_i}W^{s}(p) $, $ W^{u}(S_i) = \bigcup\limits_{p\in S_i}W^{u}(p) $, $ i = 1, 2 $.

其中$ \omega(N_{0}) $$ N_{0} $$ \omega $极限集, $ \alpha(N_1) $$ N_{1} $$ \alpha $极限集.

系统(3.1)的奇异解是指初始点在$ B_0^L $和终端点在$ B_0^R $一系列退化系统的解.如图 1所示, $ \bar{p}_0 $为奇异解在边界流形$ B_0^L $上的初始点, $ p_3 $为奇异解在边界流形$ B_0^R $上的终端点,点$ p_i $$ \bar{p}_{i} $为奇异解在流形$ S_{i} $上的初始点和终端点,其中$ S_{i} $是奇异解经过的第$ i $个慢流形, $ i = 1, 2. $

图 1

图 1   系统(3.1)的奇异解


定理 3.1   如果满足条件$ ({\rm H}_{1}) $$ ({\rm H}_{3}) $,则对于充分小的$ \mu>0 $,奇异摄动边值问题(2.1)存在阶梯状空间对照结构解$ x(t, \mu) $$ y(t, \mu) $,即

  连接问题(3.1)的讨论空间维数为$ {\rm R}^6 $, $ \dim B_{\mu}^{L} = 2, \ \dim B_{\mu}^{R} = 3, \ \dim S_1 = \dim S_2 = 4 $. $ N_0 = B_{0}^{L}\cap W^{s}(S_1) $,映射$ N_{0}\rightarrow \omega(N_{0}) = \chi^{1}, p_{1}\in \chi^{1} $, $ \omega(\bar{p}_{0}) = p_{1} $, $ U^{1} = \chi^{1}\cdot(T_{1}-\delta, T_{1}+\delta) $.由横截相交假设可知, $ \dim W^s(S_1) = 5 $, $ \dim N_0 = 1 $.因此,稳定流形$ W^{s}(S_1) $$ B_{0}^{L} $横截相交于一个一维流形.显然, $ \dim \chi^{1} = 1, \ \dim U^{1} = 2 $.解由点$ p_{1} $到达$ \bar{p}_{1} $的时间是有限的,同时有$ \dim W^u(U^1) = 3 $.

$ N_1 = B_{0}^{R}\cap W^{u}(S_2) $, $ p_{3}\in N_{1} $,映射$ N_{1}\rightarrow \alpha(N_{1}) = \chi^{2}, \bar{p}_{2}\in \chi^{2} $, $ \alpha(p_{3}) = \bar{p}_{2} $, $ U^{2} = \chi^{2}\cdot(T_{2}-\delta, T_{2}+\delta) $.由假设可知, $ \dim W^u(S_2) = 5 $, $ \dim N_1 = 2 $.因此, $ S_2 $的不稳定流形与$ B_{0}^{R} $横截相交于一个二维流形.显然, $ \dim \chi^{2} = 2, \ \dim U^{2} = 3 $.解由点$ \bar{p}_{2} $到达$ p_{2} $的时间是有限的,同时$ \dim W^s(U^2) = 4 $.

$ \sigma = \dim(W^s(U^2)\cap W^u(U^1)) $,不稳定流形$ W^u(U^1) $和稳定流形$ W^s(U^2) $横截相交,且

因此,存在连接慢流形$ S_1 $和慢流形$ S_2 $的异宿轨道,进一步交换引理[13]的全部条件都满足,奇异摄动边值问题(2.1)存在阶梯状空间对照结构解.

4 渐近解的构造

根据解的结构,本节将利用边界层函数法[1],构造奇异摄动边值问题(2.2)的渐近解.假设渐近级数为$ \omega = (y, z, x, k_{1}, k_{2})^{{\rm T}} $

$ \begin{equation} \omega^{(-)}(t, \mu) = \sum\limits_{k = 0}^\infty\mu^k(\bar{\omega}_{k}^{(-)}(t)+L_k\omega(\tau_0)+Q_k^{(-)}\omega(\tau_1)), \quad 0\leq t\leq t^*, \end{equation} $

$ \begin{equation} \omega^{(+)}(t, \mu) = \sum\limits_{k = 0}^\infty\mu^k(\bar{\omega}_{k}^{(+)}(t)+Q_{k}^{(+)}\omega(\tau_1)+R_k\omega(\tau_2)), \quad t^*\leq t\leq 1, \end{equation} $

其中$ \tau_{0} = t\mu^{-1}, \quad \tau_{1} = (t-t^{*})\mu^{-1}, \quad \tau_{2} = (t-1)\mu^{-1} $, $ \bar{\omega}_{k}^{(\mp)}(t) $是正则项的系数, $ L_k\omega(\tau_0) $是左边界层项的系数, $ R_k\omega(\tau_2) $是右边界层项的系数, $ Q_k^{(\mp)}\omega(\tau_1) $内部转移层项的系数.

为确定内部转移点\ $ t^*(\mu)\in [0, 1] $,假设其渐近级数为

把形式渐近解(4.1)和(4.2)代入边值问题(2.2),按快慢尺度$ t $, $ \tau_0 $, $ \tau_1 $$ \tau_2 $分离,比较$ \mu $的同次幂,可得确定$ \bar{y}_k^{(\mp)}(t), \ \bar{z}_k^{(\mp)}(t), $$ \bar{x}_k^{(\mp)}(t), \bar{k}_{1k}^{(\mp)}(t) $$ \bar{k}_{2k}^{(\mp)}(t), $$ L_ky(\tau_0), \ L_kz(\tau_0) $, $ L_kx(\tau_0), L_kk_{1}(\tau_0), $$ L_kk_{2}(\tau_0) $, $ Q_k^{(\mp)}y(\tau_1), \ Q_k^{(\mp)}z(\tau_1), $$ Q_k^{(\mp)}x(\tau_1) $, $ Q_k^{(\mp)}k_{1}(\tau_1), Q_k^{(\mp)}k_{2}(\tau_1) $, $ R_ky(\tau_2), R_kz(\tau_2), R_kx(\tau_2) $, $ R_kk_{1}(\tau_2), R_kk_{2}(\tau_2) $, $ k\geq0 $的方程和条件.

先给出确定零次正则项$ \bar{y}_0^{(\mp)}(t), \ \bar{z}_0^{(\mp)}(t), $$ \bar{x}_0^{(\mp)}(t), $$ \bar{k}_{10}^{(\mp)}(t) $$ \bar{k}_{20}^{(\mp)}(t) $的方程和条件

$ \begin{equation} \left\{\begin{array}{ll} \bar{z}_{0}^{(\mp)}(t) = 0, \ f(\bar{x}_0^{(\mp)}(t), \bar{y}_0^{(\mp)}(t), t) = 0, \\ { } \frac{{\rm d}\bar{x}_{0}^{(\mp)}(t)}{{\rm d}t} = g(\bar{x}_0^{(\mp)}(t), \bar{y}_0^{(\mp)}(t), t), \quad \frac{{\rm d}\bar{k}_{10}^{(\mp)}(t)}{{\rm d}t} = h_{1}(\bar{y}_0^{(\mp)}(t)), \\ { } \frac{{\rm d}\bar{k}_{20}^{(\mp)}(t)}{{\rm d}t} = h_{2}(\bar{y}_0^{(\mp)}(t)), \end{array}\right. \end{equation} $

由假设($ {\rm H}_2 $),可知

关于$ \bar{k}_{10}^{(\mp)}(t), \ \bar{k}_{20}^{(\mp)}(t) $,将结合条件$ \bar{k}_{10}^{(+)}(1)+R_0k_{1}(0) = 0, $$ \bar{k}_{20}^{(-)}(0)+L_0k_{2}(0) = 0, $$ \bar{k}_{10}^{(-)}(t_0) = \bar{k}_{10}^{(+)}(t_0), $$ \bar{k}_{20}^{(-)}(t_0) = \bar{k}_{20}^{(+)}(t_0) $来确定,需要指出解中包含边界层中的未知项.

确定零次左边界层项$ L_0y(\tau_0), \ L_0z(\tau_0) $, $ L_0x(\tau_0), \ L_0k_{1}(\tau_0), \ L_0k_{2}(\tau_0) $的方程和条件为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}L_{0}y}{{\rm d}\tau_{0}} = L_0z, \ \frac{{\rm d}L_0z}{{\rm d}\tau_0} = f(\varphi_1(0)+L_0x, \alpha_1(\varphi(0))+L_0y, 0), \\ { } \frac{{\rm d}L_0x}{{\rm d}\tau_0} = 0, \ \ \frac{{\rm d}L_0k_{1}}{{\rm d}\tau_0} = 0, \frac{{\rm d}L_0k_{2}}{{\rm d}\tau_0} = 0, \\ { } \bar{y}_{0}^{(-)}(0)+L_{0}y(0) = -\bar{k}_{10}^{(-)}(0)+L_0k_{1}(0)+y^{0}, \ \bar{x}_0^{(-)}(0)+L_0x(0) = x^0, \\ { } L_0y(+\infty) = 0, \ L_0z(+\infty) = 0, \ L_0x(+\infty) = 0, \ L_0k_{1}(+\infty) = 0, L_0k_{2}(+\infty) = 0, \end{array}\right. \end{equation} $

由边界层函数法的性质可知,边界层项都是指数衰减的,因此$ L_0x = 0, \ L_0k_{1} = 0, \ L_0k_{2} = 0 $.同理, $ R_0k_{1} = 0 $,基于此,正则项$ \bar{k}_{10}^{(\mp)}(t), \ \bar{k}_{20}^{(\mp)}(t) $可同时确定.

类似地,确定零次内部转移层项$ Q_0^{(\mp)}y(\tau_1), \ Q_0^{(\mp)}z(\tau_1), $$ Q_0^{(\mp)}x(\tau_1) $, $ Q_0^{(\mp)}k_{1}(\tau_1) $$ Q_0^{(\mp)}k_{2}(\tau_1) $的方程和条件为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}Q_{0}^{(\mp)}y}{{\rm d}\tau_1} = Q_0^{(\mp)}z, \ \frac{{\rm d}Q_0^{(\mp)}z}{{\rm d}\tau_1} = f(\varphi_{1, 2}(t_0)+Q_0^{(\mp)}x, \alpha_{1, 2}(\varphi_{1, 2}(t_0))+Q_0^{(\mp)}y, t_0), \\ { } \frac{{\rm d}Q_{0}^{(\mp)}x}{{\rm d}\tau_1} = 0, \ \frac{{\rm d}Q_0^{(\mp)}k_{1}}{{\rm d}\tau_1} = 0, \frac{{\rm d}Q_0^{(\mp)}k_{2}}{{\rm d}\tau_1} = 0, \\ Q_{0}^{(\mp)}y(0)+\alpha_{1, 2}(\varphi_{1, 2}(t_{0})) = \beta(t_{0}), Q_{0}^{(\mp)}y(\mp \infty) = 0, Q_{0}^{(\mp)}z(\mp \infty) = 0, \\ Q_{0}^{(\mp)}x(\mp \infty) = 0, \ Q_{0}^{(\mp)}k_1(\mp \infty) = 0, Q_{0}^{(\mp)}k_2(\mp \infty) = 0, \end{array}\right. \end{equation} $

其中$ \beta(t_{0}) = \frac{1}{2}(\alpha_1(\varphi_1(t))+\alpha_2(\varphi_2(t))) $.作变量代换

可得

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}\tilde{y}^{(\mp)}}{{\rm d}\tau_1} = \tilde{z}^{(\mp)}, \ \frac{{\rm d}\tilde{z}^{(\mp)}}{{\rm d}\tau_1} = f(\tilde{x}^{(\mp)}, \tilde{y}^{(\mp)}, t_0), \\ { } \frac{{\rm d}\tilde{x}^{(\mp)}}{{\rm d}\tau_1} = 0, \ \frac{{\rm d}\tilde{k}_1^{(\mp)}}{{\rm d}\tau_1} = 0, \frac{{\rm d}\tilde{k}_2^{(\mp)}}{{\rm d}\tau_1} = 0, \\ \tilde{y}^{(\mp)}(0) = \beta(t_{0}), \tilde{y}^{(\mp)}(\mp \infty) = \alpha_{1, 2}(\varphi_{1, 2}(t_{0})), \\ \tilde{z}^{(\mp)}(\mp \infty) = 0, \tilde{x}^{(\mp)}(\mp \infty) = \varphi_{1, 2}(t_0), \ \tilde{k}_1^{(\mp)}(\mp \infty) = 0, \tilde{k}_2^{(\mp)}(\mp \infty) = 0, \end{array}\right. \end{equation} $

利用文献[1]的主要结果,可知确定内部转移层点$ t^* $的主项$ t_0 $的方程为

为保证解的存在性,接下来的条件需要满足,需要指出这些条件都是平凡的.

($ {\rm H}_{4} $)  $ I'(t_0)\neq 0 $,左初值问题

有解$ \beta_1(t) $,右初值问题

有解$ \beta_2(t) $,其中$ \beta_1(t) $$ \beta_2(t) $$ t_0 $处横截相交.\同时,左初值问题

有解$ \gamma_1(t) $,同时右初值问题

有解$ \gamma_2(t) $,其中$ \gamma_1(t) $$ \gamma_2(t) $$ t_0 $处横截相交, $ t_0\in (0, 1) $.

确定零次右边界层项$ R_0y(\tau_2), R_0z(\tau_2), R_0x(\tau_2) $, $ R_0k_{1}(\tau_2) $$ R_0k_{2}(\tau_2) $的方程和条件为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}R_{0}y}{{\rm d}\tau_{2}} = R_0z, \ \frac{{\rm d}R_0z}{{\rm d}\tau_2} = f(\varphi_2(1)+R_0x, \alpha_2(\varphi_2(1))+R_0y, 1), \\ { } \frac{{\rm d}R_{0}x}{{\rm d}\tau_{2}} = 0, \ \frac{{\rm d}R_0k_1}{{\rm d}\tau_2} = 0, \frac{{\rm d}R_0k_2}{{\rm d}\tau_2} = 0, \\ \alpha_2(\varphi_2(1))+R_{0}y(0) = \bar{k}_{20}^{(+)}(1)+R_0k_{2}(0)+y^{1}, R_0y(-\infty) = 0, \ R_0z(-\infty) = 0, \\ R_0x(-\infty) = 0, \ R_0k_{1}(-\infty) = 0, R_0k_{2}(-\infty) = 0, \end{array}\right. \end{equation} $

类似于零次左边界层项的讨论,可知$ R_0x = 0, \ R_0k_1 = 0 $, $ R_0k_2 = 0 $.结合条件(H$ _{3} $),可知问题(4.4)–(4.7)的解存在.至此,已确定了形式渐近解的全部零次主项,接下来,给出确定渐近解高阶项的方程和条件.

确定高次正则项$ \bar{y}_{n}^{(\mp)}(t), \ \bar{z}_{n}^{(\mp)}(t), \ \bar{x}_{n}^{(\mp)}(t), \ \bar{k}_{1n}^{(\mp)}(t), $$ \bar{k}_{2n}^{(\mp)}(t), \ n\geq 1 $的方程和条件为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}\bar{y}_{n-1}^{(\mp)}}{{\rm d}t} = \bar{z}_{n}^{(\mp)}(t), \\ { } \frac{{\rm d}\bar{z}_{n-1}^{(\mp)}}{{\rm d}t} = \tilde{f}_{x}\bar{x}_{n}^{(\mp)}(t)+\tilde{f}_{y}\bar{y}_{n}^{(\mp)}(t)+F_{1n}^{(\mp)}(t), \\ { } \frac{{\rm d}\bar{x}_{n}^{(\mp)}}{{\rm d}t} = \tilde{g}_{x}\bar{x}_{n}^{(\mp)}(t)+\tilde{g}_{y}\bar{y}_{n}^{(\mp)}(t)+F_{2n}^{(\mp)}(t), \\ { } \frac{{\rm d}\bar{k}_{1n}^{(\mp)}}{{\rm d}t} = h_{1y}(\alpha_{1, 2}(\varphi_{1, 2}(t)))\bar{y}_{n}^{(\mp)}(t)+F_{3n}^{(\mp)}(t), \\ { }\frac{{\rm d}\bar{k}_{2n}^{(\mp)}}{{\rm d}t} = h_{2y}(\alpha_{1, 2}(\varphi_{1, 2}(t)))\bar{y}_{n}^{(\mp)}(t)+F_{4n}^{(\mp)}(t), \end{array}\right. \end{equation} $

其中

$ F_{in}^{(\mp)}(t), \ i = 1, 2, 3, 4 $是依赖于一些已确定项的已知函数.需要指出问题(4.8)的解依赖于$ \bar{x}_{n}^{(\mp)} $的可解性,将在高次边界层项确定时给出.

确定高次左边界层项$ L_{n}y(\tau_0) $$ L_{n}z(\tau_0), $$ L_{n}x(\tau_0) $, $ L_{n}k_{1}(\tau_0) $$ L_{n}k_{2}(\tau_0), n\geq 1 $的方程和条件为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}L_ny}{{\rm d}\tau_0} = L_{n}z, \\ { } \frac{{\rm d}L_nz}{{\rm d}\tau_0} = \tilde{f}_{x}^{(L)}(\tau_0)L_nx+\tilde{f}_{y}^{(L)}(\tau_0)L_ny+F_{1n}^{(L)}(\tau_0), \\ { } \frac{{\rm d}L_nx}{{\rm d}\tau_0} = \tilde{g}_{x}^{(L)}(\tau_0)L_{n-1}x+\tilde{f}_{y}^{(L)}(\tau_0)L_{n-1}y+F_{2n}^{(L)}(\tau_0), \\ { } \frac{{\rm d}L_nk_1}{{\rm d}\tau_0} = \tilde{h_1}_{y}^{(L)}(\tau_0)L_{n-1}y+F_{3n}^{(L)}(\tau_0), \\ { } \frac{{\rm d}L_nk_2}{{\rm d}\tau_0} = \tilde{h_2}_{y}^{(L)}(\tau_0)L_{n-1}y+F_{4n}^{(L)}(\tau_0), \\ \bar{y}_n(0)+L_ny(0) = -\bar{k}_{1n}(0)-L_{n}k_{1}(0), \ L_nk_{2}(0) = -\bar{k}_{2n}^{(-)}(0), \\ L_nx(0) = -\bar{x}_n^{(-)}(0), \ L_ny(+\infty) = 0, \ L_nz(+\infty) = 0, \ L_nx(+\infty) = 0, \\ L_nk_{1}(+\infty) = 0, \ L_nk_{2}(+\infty) = 0, \end{array}\right. \end{equation} $

其中$ \tilde{f}_{y}^{(L)}(\tau_0), \tilde{f}_{x}^{(L)}(\tau_0), \tilde{g}_{y}^{(L)}(\tau_0), \ \tilde{g}_{x}^{(L)}(\tau_0) $$ (\varphi_{1}(0)+L_0x, \alpha_1(\varphi_1(0))+L_0y, 0) $取值, $ F_{in}^{(L)}(\tau_0), $$ i = 1, 2, 3, 4 $是依赖于一些已确定项的已知函数.令$ G_{1}(\tau_0) = \tilde{g}_{x}^{(L)}(\tau_0)L_{n-1}x+\tilde{f}_{y}^{(L)}(\tau_0)L_{n-1}y+F_{2n}^{(L)}(\tau_0) $,对方程$ \frac{{\rm d}L_nx}{{\rm d}\tau_0} = G_{1}(\tau_0) $$ +\infty $$ \tau_0 $积分,可知

$ \tau_0 = 0 $,利用(4.9)式,可得

其中$ G_{1}(\tau_0) $是依赖于一些已确定项的已知函数.利用方程(4.8),可确定高次项$ \bar{\omega}_{n}^{(-)}(t) $.需要指出$ \bar{k}_{1n}^{(-)}(t) $中包含任意常数参数,需要在内部层和右边界层项的计算中确定.类似于$ L_nx(\tau_0) $的计算过程, $ L_nk_{1}(\tau_0) $$ L_nk_{2}(\tau_0) $同样可以确定,关于变量$ L_ny(\tau_0) $$ L_nz(\tau_0) $解的存在性接下来给出说明.

考虑确定内部层高次项$ Q_{n}^{(\mp)}y(\tau_1), $$ Q_{n}^{(\mp)}z(\tau_1), $$ Q_{n}^{(\mp)}x(\tau_1), $$ Q_{n}^{(\mp)}k_{1}(\tau_1) $$ Q_{n}^{(\mp)}k_{2}(\tau_1), n\geq 1 $的方程和条件

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}Q_{n}^{(\mp)}y}{{\rm d}\tau_1} = Q_{n}^{(\mp)}z(\tau_1), \\ { } \frac{{\rm d}Q_n^{(\mp)}y}{{\rm d}\tau_1} = \tilde{f}_{x}^{(Q){(\mp)}}(\tau_1)Q_{n}^{(\mp)}x(\tau_{1})+\tilde{f}_{y}^{(Q){(\mp)}}(\tau_1)Q_{n}^{(\mp)}y(\tau_{1})+ \tilde{f}_{t}^{(Q){(\mp)}}(\tau_1)t_{n}\\ {\quad} +F_{1n}^{(Q){(\mp)}}(\tau_1), \\ { } \frac{{\rm d}Q_{n}^{(\mp)}x}{{\rm d}\tau_1} = \tilde{g}_{x}^{(Q){(\mp)}}(\tau_1)Q_{n-1}^{(\mp)}x(\tau_{1})+\tilde{g}_{y}^{(Q){(\mp)}}(\tau_1)Q_{n-1}^{(\mp)}y(\tau_{1})+ F_{2n}^{(Q){(\mp)}}(\tau_1), \\ { } \frac{{\rm d}Q_n^{(\mp)}k_{1}}{{\rm d}\tau_1} = \tilde{h}_{1y}^{(Q){(\mp)}}(\tau_1)Q_{n-1}^{(\mp)}y(\tau_{1})+ F_{3n}^{(Q){(\mp)}}(\tau_1), \\ { } \frac{{\rm d}Q_n^{(\mp)}k_{2}}{{\rm d}\tau_1} = \tilde{h}_{2y}^{(Q){(\mp)}}(\tau_1)Q_{n-1}^{(\mp)}y(\tau_{1})+ F_{4n}^{(Q){(\mp)}}(\tau_1), \\ { } Q_{n}^{(\mp)}y(0) = \sigma_{n}\big(\rho(t_1, \cdots t_{n})\big), \ Q_{n}^{(\mp)}y(\mp\infty) = 0, \ Q_{n}^{(\mp)}z(\mp\infty) = 0, \\ Q_{n}^{(\mp)}x(\mp\infty) = 0, Q_{n}^{(\mp)}k_{1}(\mp\infty) = 0, Q_{n}^{(\mp)}k_{2}(\mp\infty) = 0, \end{array}\right. \end{equation} $

其中$ \tilde{f}_{y}^{(Q){(\mp)}}(\tau_1), \ \tilde{f}_{x}^{(Q){(\mp)}}(\tau_1), \ \tilde{g}_{y}^{(Q){(\mp)}}(\tau_1), \tilde{g}_{x}^{(Q){(\mp)}}(\tau_1), $$ \tilde{f}_{t}^{(Q){(\mp)}}(\tau_1) $

取值, $ \sigma_{n}(\rho), \ F_{in}^{Q{(\mp)}}(\tau_1), \ i = 1, 2, 3, 4 $是依赖于一些已确定项的已知函数.令$ G_{2}(\tau_1) = \tilde{g}_{x}^{(Q){(\mp)}}(\tau_1)Q_{n-1}^{(\mp)}x(\tau_{1})+\tilde{g}_{y}^{(Q){(\mp)}}(\tau_1)Q_{n-1}^{(\mp)}y(\tau_{1})+ F_{2n}^{(Q){(\mp)}}(\tau_1) $,对方程$ \frac{{\rm d}Q_n^{(\mp)}x}{{\rm d}\tau_1} = G_{2}(\tau_1) $$ \mp\infty $$ \tau_1 $积分,可知

其中$ G_{2}(\tau_1) $是依赖于一些已确定项的已知函数.类似地,可确定$ Q_{n}^{(\mp)}k_1 $$ Q_{n}^{(\mp)}k_2 $.讨论确定$ t_{n} $的方程和条件,考虑系统(4.10)的联合系统

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}Q_{n}y}{{\rm d}\tau_1} = Q_{n}z(\tau_1), \\ { } \frac{{\rm d}Q_nz}{{\rm d}\tau_1} = \tilde{f}_{y}^{(Q)}(\tau_1)Q_{n}y(\tau_{1}) +\tilde{f}_{x}^{(Q)}(\tau_1)Q_{n}x(\tau_{1})+\tilde{f}_{t}^{(Q)}(\tau_1)t_{n}+F_{1n}^{(Q)}(\tau_1), \end{array}\right. \end{equation} $

其中$ \tilde{f}_{y}^{(Q)}(\tau_1), \ \tilde{f}_{x}^{(Q)}(\tau_1) $$ \tilde{f}_{t}^{(Q)}(\tau_1) $$ (q_{11}(\tau_1), q_{12}(\tau_1), t_0) $取值,同时满足

$ Q_{n}\lambda = \big(Q_{n}^{{\rm T}}y, \ Q_{n}^{{\rm T}}z\big)^{{\rm T}} $, $ \tilde{f}_n^{Q}(\tau_1) = \big(0, \ F_{1n}^{Q{\rm T}}(\tau_1)\big)^{{\rm T}} $,

利用指数二分法,算子$ F(Q_{n}\lambda) = \frac{{\rm d}Q_{n}\lambda}{{\rm d}\tau_1}-I_{\lambda}(\tau_1)Q_{n}\lambda $是Fredholm型算子, Fredholm指标$ \dim {\rm Ker} F-\dim {\rm Ker} F^{*} = 0 $,其中$ I_{\lambda}(\tau_1) $$ (q_{11}(\tau_1), q_{12}(\tau_1), t_0) $取值.利用文献[16]的引理3.7,可知存在唯一的函数$ \psi_{1}(\tau_1)\in {\rm Ker} F^{*} $,方程(4.11)有解等价于

借助于假设$ {\rm H}_3 $和melnikov函数,计算可得$ \int_{-\infty}^{\infty}\psi_{1}^*B {\rm d}\tau_1 \neq 0 $,其中

到此为止,已确定了$ t_{n} $,利用假设$ {\rm H}_3 $,可确定内部转移层项$ Q_{n}^{(\mp)}\omega(\tau_1) $.利用变量$ y, z, x, \ k_{1}, \ k_{2} $的表达式和连续性,可确定正则项$ \bar{y}_n^{(+)}(t), \bar{z}_n^{(+)}(t) $, $ \bar{x}_n^{(+)}(t) $, $ \bar{k}_{1n}^{(+)} $$ \bar{k}_{2n}^{(+)}(t) $.

确定右边界层高次项$ R_{n}y(\tau_2) $, $ R_{n}z(\tau_2), $$ R_{n}x(\tau_2) $, $ R_{n}k_{1}(\tau_2) $$ R_{n}k_{2}(\tau_2), n\geq 1 $的方程和条件为

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}R_ny}{{\rm d}\tau_2} = R_{n}z, \\ { } \frac{{\rm d}R_nz}{{\rm d}\tau_2} = \tilde{f}_{x}^{(R)}(\tau_2)R_nx+\tilde{f}_{y}^{(R)}(\tau_2)R_ny+F_{1n}^{(R)}(\tau_2), \\ { } \frac{{\rm d}R_nx}{{\rm d}\tau_2} = \tilde{g}_{x}^{(R)}(\tau_2)R_{n-1}x+\tilde{f}_{y}^{(R)}(\tau_2)R_{n-1}y+F_{2n}^{(R)}(\tau_0), \\ { } \frac{{\rm d}R_nk_1}{{\rm d}\tau_2} = \tilde{h_1}_{y}^{(R)}(\tau_2)R_{n-1}y+F_{3n}^{(R)}(\tau_2), \\{ } \frac{{\rm d}R_nk_2}{{\rm d}\tau_2} = \tilde{h_2}_{x}^{(R)}(\tau_2)R_{n-1}y+F_{4n}^{(R)}(\tau_2), \\ R_ny(0) = -\bar{y}_n^{(+)}(1)+\bar{k}_{2n}^{(+)}(1)+R_{n}k_{2}(0), \ R_nk_{1}(0) = -\bar{k}_{1n}^{(+)}(1), \\ R_ny(+\infty) = 0, \ R_nz(+\infty) = 0, \ R_nx(+\infty) = 0, \\ R_nk_{1}(+\infty) = 0, \ R_nk_{2}(+\infty) = 0, \end{array}\right. \end{equation} $

其中$ \tilde{f}_{y}^{(R)}(\tau_2), \tilde{f}_{x}^{(R)}(\tau_2), \tilde{g}_{y}^{(R)}(\tau_2), \ \tilde{g}_{x}^{(R)}(\tau_2) $$ (\varphi_{2}(1)+R_0x, \alpha_2(\varphi_2(1))+R_0y, 1) $取值, $ F_{in}^{(R)}(\tau_2), $$ i = 1, 2, 3, 4 $依赖于一些已确定项的已知函数.令$ G_{3}(\tau_2) = \tilde{h_1}_{y}^{(R)}(\tau_2)L_{n-1}y+F_{3n}^{(R)}(\tau_2) $,对方程$ \frac{{\rm d}R_nk_{1}}{{\rm d}\tau_2} = G_{3}(\tau_2) $$ -\infty $$ \tau_2 $积分,有

$ \tau_2 = 0 $,利用方程(4.12),可得

其中$ G_{3}(\tau_2) $是依赖于一些已确定项的已知函数.借助于变量$ \bar{k}_{1n}(t) $的表达式和连续性,则可确定$ \bar{\omega}_{n}^{(+)}(t) $.

需要指出方程(4.9)和(4.12)是线性非齐次微分方程,变量$ L_nx(\tau_0), L_nk_1(\tau_0), L_nk_2(\tau_0) $, $ R_nx(\tau_2), $$ R_nk_1(\tau_2) $$ R_nk_2(\tau_2) $已由方程确定.因此,只需考虑方程(4.9)和(4.12)前两个变量就可以. $ (L'_0y, L'_0z) $$ (R'_0y, R'_0z) $是方程(4.9)和(4.12)对应的线性齐次方程的解,利用文献[1]的结果,可知方程(4.9)和(4.12)前两个变量的解存在.

定理 4.1   如果满足条件$ ({\rm H}_1) $$ ({\rm H}_4) $,那么对充分小的$ \mu>0 $,奇异摄动边值问题(2.1)存在阶梯状空间对照结构解$ x(t, \mu) $$ y(t, \mu) $且满足

其中$ T_{n} = t_{0}+\mu t_{1}+\cdots+\mu^n t_{n}. $

5 例子

考虑奇异摄动边值问题

$ \begin{equation} \left\{\begin{array}{ll} { } \mu^{2}\frac{{\rm d}^{2}y}{{\rm d}t^{2}} = (y^2-4)(y-a(t)), \\ { } \frac{{\rm d}x}{{\rm d}t} = t, \\ { } x(0, \mu) = 1, \quad y(0, \mu) = \int_{0}^{1}y(s, \mu){\rm d}s\, , \quad y(1, \mu) = \int_{0}^{1}2y(s, \mu){\rm d}s. \end{array}\right. \end{equation} $

为了简化计算,不妨假设$ a(0) = a(1) = 0 $, $ a(\frac{1}{2}) = 0 $$ a'(\frac{1}{2})\neq 0 $.原问题可改写为

$ \begin{equation} \left\{\begin{array}{ll} { } \mu\frac{{\rm d}y}{{\rm d}t} = z, \quad \mu\frac{{\rm d}z}{{\rm d}t} = (y^2-4)(y-a(t)), \\ { } \frac{{\rm d}x}{{\rm d}t} = t, \quad \frac{{\rm d}k_{1}}{{\rm d}t} = y, \quad \frac{{\rm d}k_{2}}{{\rm d}t} = 2y, \\ y(0) = -k_1(0), \quad x(0) = 1, \quad k_1(1) = 0, \quad k_2(0) = 0, \quad y(1) = k_2(1). \end{array}\right. \end{equation} $

确定正则零次项的方程为条件为

转移点$ t^* $的主项$ t_0 $满足方程$ I(t_{0}) = \int_{-2}^{2}(y^2-4)(y-a(t_0)){\rm d}y = 0 $,有$ t_{0} = 1/2 $.

确定内部转移层零次项$ Q^{(\mp)}_{0}y $的方程和条件为

可得

同理,可知

从而可得问题(5.1)的形式渐近解为

参考文献

倪明康, 林武忠.

奇异摄动问题中的渐近理论

北京:高等教育出版社, 2009

URL     [本文引用: 4]

Ni M K , Lin W Z .

Asymptotic Theory of Singularly Perturbed Problem

Beijing:Higher Education Press, 2009

URL     [本文引用: 4]

Mo J Q , Wang H , Lin W T .

The solvability for a class of singularly perturbed quasi-linear differential system

Acta Mathematica Scientia, 2008, 28B (3): 495- 500

URL    

Mo J Q , Lin W T , Wang H .

A class of homotopic solving method for ENSO model

Acta Mathematica Scientia, 2009, 29B (1): 101- 110

URL    

Du Z J , Kong L J .

Asymptotic solutions of singularly perturbed second-order differential equations and application to multi-point boundary value problems

Applied Mathematics Letters, 2010, 23, 980- 983

DOI:10.1016/j.aml.2010.04.021     

刘树德, 孙建山, 谢元静.

一类奇摄动拟线性边值问题的激波解

数学物理学报, 2012, 32A (2): 312- 319

URL    

Liu S D , Sun J S , Xie Y J .

Shock solutions for some singularly perturbed quasilinear boundary value problems

Acta Mathematica Scientia, 2012, 32A (2): 312- 319

URL    

刘帅, 沈建和, 周哲彦.

二阶半线性奇摄动边值问题的渐近解

数学物理学报, 2014, 34A (5): 1104- 1110

URL     [本文引用: 1]

Liu S , Shen J H , Zhou Z Y .

Asymptotic solution for second-order semilinear singularly perturbed boundary value problems

Acta Mathematica Scientia, 2014, 34A (5): 1104- 1110

URL     [本文引用: 1]

Ionkin N I .

Solution of a boundary value problem in heat conduction theory with nonlocal boundary conditions

Differential Equations, 1977, 13, 294- 304

URL     [本文引用: 1]

Nicoud F , Schonfeld T .

Integral boundary conditions for unsteady biomedical CFD applications

Internat J Numer Methods Fluids, 2002, 40, 457- 465

DOI:10.1002/fld.299      [本文引用: 1]

Amiraliyev G M , Cakir M .

Numerical solution of the singularly perturbed problem with nonlocal boundary condition

Applied Mathematics and Mechanics, 2002, 23 (7): 755- 764

DOI:10.1007/BF02456971      [本文引用: 1]

Cakir M , Amiraliyev G M .

A finite difference method for the singularly perturbed problem with nonlocal boundary condition

Applied Mathematics and Computation, 2005, 160, 539- 549

DOI:10.1016/j.amc.2003.11.035      [本文引用: 1]

Xie F , Jin Z Y , Ni M K .

On the step-type contrast structure of second-order semilinear differential equation with integral boundary conditions

Electronic Journal of Qualitative Theory of Differential Equations, 2010, 1, 1- 14

URL     [本文引用: 2]

谢峰, 张莲.

具有积分边界条件的非线性二阶奇摄动问题

华东师范大学学报, 2010, 1, 1- 5

URL     [本文引用: 2]

Xie F , Zhang L .

Nonlinear second order singularly perturbed problem with integral boundary condition

Journal of East China Normal University, 2010, 1, 1- 5

URL     [本文引用: 2]

Tin S K , Koppell N , Jones C K R T .

Invariant manifolds and singularly perturbed boundary value problems

SIAM J Numer Anal, 1994, 31 (6): 1558- 1576

DOI:10.1137/0731081      [本文引用: 4]

Wu L M , Ni M K , Lu H B .

Internal layer solution of singularly perturbed optimal control problem with integral boundary condition

Qualitative Theory of Dynamical Systems, 2018, 17, 49- 66

DOI:10.1007/s12346-017-0261-0      [本文引用: 1]

陆海波, 倪明康, 武利猛.

奇异奇摄动系统的几何方法

华东师范大学学报, 2013, 3, 140- 148

URL     [本文引用: 2]

Lu H B , Ni M K , Wu L M .

Geometric singular perturbation approach to singular singularly perturbed systems

Journal of East China Normal University, 2013, 3, 140- 148

URL     [本文引用: 2]

Lin X B .

Shadowing lemma and singularly perturbed boundary value problems

SIAM Journal on Applied Mathematics, 1989, 49, 26- 54

DOI:10.1137/0149002      [本文引用: 1]

Li X J , Zhang Q .

Existence of solution for a p-Laplacian multi-point boundary value problem at resonance

Qualitative Theory of Dynamical Systems, 2018, 17, 143- 154

DOI:10.1007/s12346-017-0259-7     

Du Z J , Li J , Li X W .

The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach

J Funct Anal, 2018, 275, 988- 1007

DOI:10.1016/j.jfa.2018.05.005     

Lin X J , Liu J , Wang C .

The existence and asymptotic estimates of solutions for a third-order nonlinear singularly perturbed boundary value problem

Qualitative Theory of Dynamical Systems, 2019, 18, 687- 710

DOI:10.1007/s12346-018-0307-y     

Wang C , Zhang X .

Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type Ⅲ

J Differential Equations, 2019, 267, 3397- 3441

DOI:10.1016/j.jde.2019.04.008     

Lin X J , Liu J , Wang C .

The existence, uniqueness and asymptotic estimates of solutions for third-order full nonlinear singularly perturbed vector boundary value problems

Boundary Value Problems, 2020, 2020, 1- 17

DOI:10.1186/s13661-019-01311-5      [本文引用: 1]

/