数学物理学报 ›› 2012, Vol. 32 ›› Issue (2): 312-319.

• 论文 • 上一篇    下一篇

一类奇摄动拟线性边值问题的激波解

刘树德|孙建山|谢元静   

  1. 安徽师范大学 数学系 安徽芜湖 241000
  • 收稿日期:2009-12-10 修回日期:2011-12-16 出版日期:2012-04-25 发布日期:2012-04-25
  • 基金资助:

    国家自然科学基金(40876010)和安徽省高校自然科学基金(KJ2010A153)资助

Shock Solutions for Some Singularly Perturbed Quasilinear Boundary Value Problems

 LIU Shu-De, SUN Jian-Shan, XIE Yuan-Jing   

  1. Department of Mathematics, Anhui Normal University, Anhui Wuhu 241000
  • Received:2009-12-10 Revised:2011-12-16 Online:2012-04-25 Published:2012-04-25
  • Supported by:

    国家自然科学基金(40876010)和安徽省高校自然科学基金(KJ2010A153)资助

摘要:

研究了一类奇摄动拟线性边值问题, 在适当的条件下, 用合成展开法构造出该问题的形式近似式, 并应用不动点定理证明了激波解的存在性及其渐近性质.

关键词: 奇摄动, 拟线性, 边值问题, 激波解, 合成展开法, 不动点定理

Abstract:

Some singularly perturbed quasilinear boundary value problems with interior shock layer properties are studied under certain conditions,
the formal approximation of the problem is constructed using the mothed of composite expansions, and the existence and asymptotic behavior of solutions are proved by the fixed point theory .

Key words: Singularly perturbation, Quasilinear, Boundary value problems,  Shock solutions, The mothed of composite expansions, Fixed point theory

中图分类号: 

  • 34E15