Processing math: 5%

数学物理学报, 2020, 40(3): 597-610 doi:

论文

Marcinkiewicz积分算子及其交换子在非齐度量测度空间上的有界性

韩瑶瑶,, 赵凯,

Boundedness of Marcinkiewicz Integral and Its Commutator on Non-Homogeneous Metric Measure Spaces

Han Yaoyao,, Zhao Kai,

通讯作者: 赵凯, E-mail: zhkzhc@aliyun.com

收稿日期: 2019-08-27  

基金资助: 国家自然科学基金.  11471176
国家自然科学基金.  11871293

Received: 2019-08-27  

Fund supported: the NSFC.  11471176
the NSFC.  11871293

作者简介 About authors

韩瑶瑶,E-mail:hanyaoyao@aliyun.com , E-mail:hanyaoyao@aliyun.com

摘要

(X,d,μ)是一个满足上双倍条件和几何双倍条件的非齐度量测度空间.利用非齐度量测度空间的一些特征和不等式技巧,证明了Marcinkiewicz积分算子及其交换子在非齐度量测度空间上的Herz空间以及Herz型Hardy空间上的有界性.

关键词: 非齐度量测度空间 ; Herz空间 ; Hardy空间 ; Marcinkiewicz积分算子 ; 有界性

Abstract

Let (X,d,μ) be a non-homogeneous metric measure space satisfying both the geometrically doubling and the upper doubling conditions. By using the properties of non-homogeneous metric measure space and inequality technique, the authors proved that the Marcinkiewicz integral operator and its commutator are bounded on Herz spaces and Herz type Hardy spaces with non-homogeneous metric measure space.

Keywords: Non-homogeneous metric measure space ; Herz space ; Hardy space ; Marcinkiewicz integral ; Boundedness

PDF (367KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩瑶瑶, 赵凯. Marcinkiewicz积分算子及其交换子在非齐度量测度空间上的有界性. 数学物理学报[J], 2020, 40(3): 597-610 doi:

Han Yaoyao, Zhao Kai. Boundedness of Marcinkiewicz Integral and Its Commutator on Non-Homogeneous Metric Measure Spaces. Acta Mathematica Scientia[J], 2020, 40(3): 597-610 doi:

1 引言

函数空间理论和奇异积分算子理论组成了调和分析的重要部分.一般地,双倍条件在经典的调和分析结论中起着重要的作用.然而,多年来的许多研究结果表明,在非双倍条件下, Rn上许多经典的函数空间理论以及奇异积分算子有界性的结论依然是成立的,参见文献[1-5].

2010年, Hytönen[6]引入了满足几何双倍条件和上双倍条件的非齐度量测度空间(X,d,μ),这类空间同时包含了齐型空间和非双倍测度空间.杨大春和他的合作者们[7]引入了非齐度量测度空间上的原子Hardy空间˜Hp,q,γatb,ρ(μ)和分子Hardy空间˜Hp,q,γ,ϵmb,ρ(μ),证明了Calderón-Zygmund算子和广义分数次积分算子的有界性.另外,我们引入了非齐度量测度空间上的Herz空间以及原子和分子Herz型Hardy空间,证明了相互关系

˜H˙Kα,p,γatb,q,ρ(μ)=˜H˙Kα,p,γ,ϵmb,q,ρ(μ)˙Kα,pq(μ),

并讨论了Calderón-Zygmund算子在这些空间上的有界性[8].

Marcinkiewicz积分算子及其交换子的有界性问题一直以来受到许多作者的重视,参见文献[9-15].本文将主要讨论Marcinkiewicz积分算子及其与Campanato空间中的函数生成的交换子在非齐度量测度空间上的Herz空间以及Herz型Hardy空间的有界性,证明了Marcinkiewicz积分算子在˙Kα,pq(μ)上的有界性,从˜H˙Kα,p,γatb,q,ρ(μ)˜H˙Kα,p,γ,(δvα)/2mb,q,ρ(μ)的有界性,以及交换子从˜H˙Kα1,p,γatb,q1,ρ(μ)˙Kα2,pq2(μ)的有界性.

在这篇文章中, C表示只依赖于主要参数的常数,在不同之处也许取值不同.对于度量空间(X,d), χE表示X上子集E的特征函数. X中的球B=B(x0,r)={xX:d(x0,x)<r},其中x0表示球B的中心, r表示球B的半径.

2 预备知识

为了方便,下面介绍非齐度量测度空间上的一些基础知识和相关结论.

定义2.1[1, 16]  若存在正整数N0N,使得对任意球B(x,r)X, xX, r(0,),都存在至多N0个球{B(xi,r/2)}i构成B(x,r)的一个覆盖,则称度量空间(X,d)是几何双倍的.

定义2.2[6]  如果μ,是X上的Borel测度,并存在一个控制函数λ:X×(0,)(0,),使得对每一个xX, λ(x,r)关于r都单调不减,且存在一个依赖于λ的正常数C(λ),使得对任意的xXr(0,),有

μ(B(x,r))
(2.1)

则称度量测度空间 ({\cal X}, d, \mu) 是上双倍的.

引理2.1[17]  若 ({\cal X}, d, \mu) 是上双倍的, \lambda {\cal X}\times(0, \infty) 上的控制函数.则存在另一个控制函数 \tilde{\lambda} ,使得 \tilde{\lambda}\leqslant\lambda, C_{\tilde{(\lambda)}}\leqslant C_{(\lambda)} ,并且对于所有的 x, y \in{\cal X} ,若 d(x, y)\leqslant r ,就有

\begin{eqnarray} \tilde{\lambda}(x, r) \leqslant C_{(\tilde{\lambda})} \tilde{\lambda}(y, r). \end{eqnarray}
(2.2)

以下我们总假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间,其中控制函数 \lambda 满足条件(2.2).

文献[6]中证明了如果 ({\cal X}, d, \mu) 是一个满足上双倍条件的度量测度空间, \alpha, \beta>1 并且 \beta>C_{\lambda}^{\log_\alpha 2} = : \alpha^v ,则对于任意的球 B\subset{\cal X} ,存在一个正整数 j 使得 \alpha^{j}B 是( \alpha, \beta ) -倍的.

定义2.3[6]  设 \eta>0 ,若对所有的 r\in(0, 2{\rm diam}({\cal X})) a\in(1, {2{\rm diam}({\cal X})}/{r}) ,存在一个只依赖于 a {\cal X} 的常数 C(a)>1 ,使得对于所有的 x \in{\cal X} , \lambda(x, ar)\geqslant C(a)\lambda(x, r) ,并且 \sum\limits_{k = 1}^{\infty} {\frac{1}{[C(a^k)]^\eta}}<\infty. 则称控制函数 \lambda 满足 \eta -弱逆倍条件.

定义2.4[6]  对于任意两个球 B\subset S\subset {\cal X} ,定义

\widetilde{K}_{B, S}^{(\rho), p}: = \left\{ 1+\sum\limits_{k = -[\log_{\rho} 2]}^{N_{B, S}^{(\rho)}} \left[ \frac{\mu(\rho^{k}B)}{\lambda(c_B, \rho^{k}r_B)} \right]^p \right\} ^{1/p},

其中 \rho>1, p\in(0, 1] , N_{B, S}^{(\rho)} 是满足 \rho^{N_{B, S}^{(\rho)}}r_B\geqslant r_S 的最小正整数, [\log_{\rho}2] 表示不大于 \log_{\rho}2 的最大整数.

引理2.2[7]  假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间, p \in (0, 1] .

\rm(i) 对任意 \rho > 1,存在常数 C_{(\rho)} >0 ,使得对所有球 B \subset R \subset S ,有 [\widetilde{K}_{B, R}^{(\rho), p}]^p\leqslant C_{(\rho)}[\widetilde{K}_{B, S}^{(\rho), p}]^p.

\rm(ii) 对于任意的 \alpha \geqslant 1, \rho > 1 ,存在一个常数 C_{(\alpha, \rho)} > 0 ,使得对于所有的球 B\subset S ,其中 r_S\leqslant \alpha r_B ,有 [\widetilde{K}_{B, S}^{(\rho), p}]^p\leqslant C_{(\alpha, \rho)} .

\rm(iii) 对于任意的 \rho > 1 ,存在一个常数 c_{(\rho, p, v)} > 0 ,使得对于所有的球 B \subset R\subset S ,有 [\widetilde{K}_{B, S}^{(\rho), p}]^p\leqslant [\widetilde{K}_{B, R}^{(\rho), p}]^p +c_{(\rho, p, v)}[\widetilde{K}_{R, S}^{(\rho), p}]^p.

\rm(iv) 对任意 \rho > 1 ,存在常数 \tilde{c}_{(\rho, p, v)}>0 ,使对 B \subset R\subset S ,有 [\widetilde{K}_{R, S}^{(\rho), p}]^p\leqslant \tilde{c}_{(\rho, p, v)}[\tilde{K}_{B, S}^{(\rho), p}]^p.

\rm(v) 对于任意的 \rho_1, \rho_2 > 1 ,存在常数 c_{(\rho_1, \rho_2, p, v)} >0 C_{(\rho_1, \rho_2, p, v)} >0 ,使得对于所有的球 B \subset S ,有 c_{({\rho}_1, \rho_2, p, v)}{\widetilde{K}_{B, S}^{(\rho_2), p}} \leqslant \widetilde{K}_{B, S}^{(\rho_1), p} \leqslant C_{(\rho_1, \rho_2, p, v)}{\widetilde{K}_{B, S}^{(\rho_2), p}}.

下面是非齐度量测度空间上的Herz空间及Herz型Hardy空间的相关知识.

定义2.5[8]  令 -\infty < \alpha < \infty, 0 < p < \infty, 0 < q \leqslant \infty . ({\cal X}, d, \mu) 是一个非齐度量测度空间,则非齐度量测度空间上的齐次Herz空间定义为

\begin{eqnarray} \dot{K}_q^{\alpha, p}(\mu) = \left\{f\in L_{\rm{loc}}^q ({\cal X}\ \backslash\left\{0\right\}): \left \|f \right \|_{\dot{K}_q^{\alpha, p}(\mu)} < \infty \right\}, \end{eqnarray}
(2.3)

其中 \left \|f \right \|_{\dot{K}_q^{\alpha, p}(\mu)} = \left\{\sum\limits_{k = -\infty}^{+\infty} [{\lambda(x_0, 2^k)}]^{\alpha p}\left \|f \chi_k \right \|_{L^q(\mu)}^p\right\}^{\frac{1}{p}} .

定义2.6[8]  令 0<\alpha < \infty, 1 \leqslant q < \infty ,则 ({\cal X}, d, \mu) 上的函数 b(x) 被称为中心( \alpha, q ) -块,若 b(x) 满足以下条件:

(i) supp b \subset B(x_0, r) , r > 0 ; \ \ (ii) \left \|b\right \|_{L^q(\mu)} \leqslant [\lambda(x_0, r)]^{-\alpha}.

引理2.3[8]  令 0<\alpha < \infty, 0 < p < \infty, 1 \leqslant q < \infty . \lambda 满足 \eta -弱逆倍条件, \eta \in (0, \min\{\frac{\alpha p}{2}, \frac{\alpha p}{2(p-1)}\}) . f \in {\dot{K}_q^{\alpha, p}(\mu)} ,当且仅当 f(x) = \sum\limits_{k = -\infty}^{+\infty}{\lambda_k b_k(x)}, 其中 b_k(x) 是中心 (\alpha, q) -块,并且 \sum\limits_{k = -\infty}^{+\infty}{{\left| \lambda_k \right|}^p} < \infty .进一步, \left \|f \right \|_{\dot{K}_q^{\alpha, p}(\mu)} \sim \inf \left\{ {\sum\limits_{k = -\infty}^{+\infty}{{\left| \lambda_k \right|}^p}} \right\}^{\frac{1}{p}} .

定义2.7[8]  假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间,令 0 < p \leqslant 1 \leqslant q \leqslant \infty, p \neq q , \alpha \in (0, \infty) , \rho\in(1, \infty), \gamma\in[1, \infty) . L^2(\mu) 上的函数 b 满足以下条件:

\rm(i) supp b \subset B = B(x_0, r), r > 0 ;

\rm(ii) \int_{\cal X} b(x)\, {\rm d}{\mu(x)} = 0 ;

\rm(iii) 对于 j = 1, 2 ,存在支在球 B_j \subset B 上的函数 a_j 和常数 \lambda_j \in {\Bbb C} ,使得 b = \lambda_1 a_1 + \lambda_2 a_2 ,

\left \| a_j \right \|_{L^q(\mu)} \leqslant [\lambda(x_0, r_B)]^{-\alpha}[\widetilde{K}_{B_j, B}^{(\rho), p}]^{-\gamma}.

则称 b 是一个 (\alpha, p, q, \gamma, \rho)_\lambda -原子块.并且,令 \left| b \right|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)} = \left| \lambda_1 \right| + \left| \lambda_2 \right| .

若有( \alpha, p, q, \gamma, \rho ) _{\lambda} -原子块列 \left\{ b_i \right\}_{i = -\infty}^{+\infty} ,使得 L^2(\mu)

f = \sum\limits_{i = -\infty}^{+\infty}b_i, \; \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)}^p < \infty,

则称 f 是属于 {\widetilde{{\Bbb H}} \dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)} 的.并且

\left \| f \right \|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)}: = \inf \left\{ \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)}^p\right \}^{\frac{1}{p}} .

原子Herz型Hardy空间 \widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu) 定义为拟模 \left \| \cdot \right\|_{\widetilde{H}\dot{K}_{atb, q, \rho}^ {\alpha, p, \gamma}(\mu)}^p {\widetilde{{\Bbb H}}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)} 的完备化.

引理2.4[8]  设 0 < p \leqslant 1 \leqslant q \leqslant \infty, p \neq q . 0<\alpha<\infty, 1<\rho<\infty , 1\leqslant\gamma<\infty . f \in {\widetilde{{H}}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)} 当且仅当存在 (\alpha, p, q, \gamma, \rho ) _\lambda -原子块列 \left\{ b_i \right\}_{i = -\infty}^{+\infty} ,使得 f = \sum\limits_{i = -\infty}^{+\infty}b_i, \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)}^p < \infty. 进一步有

\left \| f \right \|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)}^p = \inf \left\{ \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)}^p \right\}.

定义2.8[8]  假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间, 0 < p \leqslant 1 \leqslant q \leqslant \infty, p\neq q ,令 \alpha \in (0, \infty) , \rho\in(1, \infty), \gamma\in[1, \infty) , \epsilon\in(0, \infty). 则若 L^2(\mu) 上的函数 b 满足以下条件:

\rm(i) \int_{{\cal X}} b(x){\rm d}{\mu(x)} = 0 ;

\rm(ii) 存在一些球 B : = B(x_0, r_B ),其中 r_B > 0 和常数 \widetilde{M}, M \in {\Bbb N} 使得对于所有的 k \in {\Bbb Z}_{+} , j \in \left\{ 1, \ldots, M_k\right\} ,当 k = 0 时, M_0 : = \widetilde{M} ,当 k >0 时, M_k : = M ;存在支在球 B_{k, j}\subset U_k(B) 上的函数 m_{k, j} ,其中当 k = 0 时, U_0(B) : = \rho^2 B ,当 k>0 时, U_k(B): = \rho^{k+2}B \setminus \rho^{k-2}B 以及常数 \lambda_{k, j}\in {\Bbb C} 使得在 L^2(\mu) b = \sum\limits_{k = 0}^{\infty} \sum\limits_{j = 1}^{M_k} \lambda_{k, j}m_{k, j} ,且有

\left \| m_{k, j} \right \|_{L^q(\mu)} \leqslant \rho^{-k\epsilon} [\lambda(x_0, \rho^{k+2}r_B)]^{-\alpha}[\widetilde{K}_{B_{k, j}, \rho^{k+2}B}^{(\rho), p}]^{-\gamma},

\left| b \right|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}^p = \sum\limits_{k = 0}^{\infty} \sum\limits_{j = 1}^{M_k}\left| \lambda_{k, j} \right|^p < \infty,

则称 b 是一个 (\alpha, p, q, \gamma, \epsilon, \rho)_\lambda -分子块.

若存在 (\alpha, p, q, \gamma, \epsilon, \rho)_{\lambda} -分子块列 \left\{ b_i\right\}_{i = -\infty}^{+\infty} ,使得在 L^2(\mu) f = \sum\limits_{i = -\infty}^{+\infty}b_i ,且有

\sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}^p < \infty,

则函数 f 称为属于 {\widetilde{{\Bbb H}}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)} .并且定义

\left \| f \right \|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}: = \inf \left\{ \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}^p \right\}^{\frac{1}{p}} .

分子Herz型Hardy空间 \widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu) 定义为拟模 \left \| \cdot \right\|_{\widetilde{H}\dot{K}_{mb, q, \rho}^ {\alpha, p, \gamma, \epsilon}(\mu)}^p {\widetilde{{\Bbb H}}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)} 的完备化.

引理2.5[8]  设 0 < p \leqslant 1 \leqslant q \leqslant \infty, p \neq q . 0<\alpha<\infty, 1<\rho<\infty, 1\leqslant\gamma<\infty, \epsilon>0 ,则 f \in {\widetilde{{H}}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)} 当且仅当存在 (\alpha, p, q, \gamma, \epsilon, \rho ) _\lambda -分子块列 \left\{ b_i \right\}_{i = -\infty}^{+\infty} ,使在 {\widetilde{{H}}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)} 中, f = \sum\limits_{i = -\infty}^{+\infty}b_i, \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}^p < \infty. 进一步

\left \| f \right \|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}^p = \inf\left \{ \sum\limits_{i = -\infty}^{+\infty} \left| b_i \right|_{\widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)}^p \right\}.

注2.1  假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间,令 0 < p \leqslant 1 \leqslant q \leqslant \infty, p \neq q , \alpha \in (0, \infty) , \rho\in(1, \infty), \gamma\in[1, \infty) . \widetilde{H}_{atb, \rho}^{p, q, \gamma}(\mu) \widetilde{H}_{mb, \rho}^{p, q, \gamma, \epsilon}(\mu) 均与 \rho \gamma 的取值无关.若 \lambda 满足 \eta -弱逆倍条件, \eta \in (0, \alpha p) ,由文献[8,定理3.6和定理3.8]知

\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu) = \widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu)\subset \dot{K}_q^{\alpha, p}(\mu).

3 Marcinkiewicz积分算子的有界性

定义3.1[18]  设函数 K {\cal X}\times{\cal X}\setminus \left\{ (x, x): x \in {\cal X}\right\} 上的局部可积函数且满足下列条件:

\rm(i) 存在正常数 C ,使得对于任意的 x, y \in {\cal X}, x \neq y,

\begin{eqnarray} \left| K(x, y)\right| \leqslant C\frac{d(x, y)}{\lambda(x, d(x, y))}; \end{eqnarray}
(3.1)

\rm(ii) 对于任意的 x, \tilde{x}, y\in {\cal X}, 2d(x, \tilde{x}) \leqslant d(x, y), 0<\delta\leqslant1,

\begin{eqnarray} \left| K(x, y) - K(\tilde{x}, y) \right| + \left| K(y, x) - K(y, \tilde{x}) \right| \leqslant C \frac{[d(x, \tilde{x})]^{ \delta}}{[d(x, y)]^{\delta-1}\lambda(x, d(x, y))}. \end{eqnarray}
(3.2)

关于核 K(x, y) 的Marcinkiewicz积分算子定义为

\begin{eqnarray} {\cal M}(f)(x): = \left(\int_{0}^{\infty}\left|\int_{d(x, y)<t}K(x, y)f(y)\, {\rm d}{\mu(y)}\right|^2\, \frac{{\rm d}t}{t^3}\right)^{1/2}, \; x \in {\cal X}. \end{eqnarray}
(3.3)

显然(3.3)式所定义的Marcinkiewicz积分算子满足文献[19]中有关Marcinkiewicz积分算子的所有结论.

定义3.2[7]  令 \rho\in (1, \infty) .如果对于所有的球 B\subset {\cal X} ,存在一个依赖于 \rho 但不依赖于 B 的正常数 \widetilde{C}_1 ,使得 N_{B, \widetilde{B}^\rho}^{(\rho)}\leq \widetilde{C}_1, 则称 \mu 满足 \rho -弱双倍条件.

定义3.3[7]  令 \alpha \in (0, \infty), \eta \in (1, \infty), \rho\in (\eta, \infty) .f \in L_{{\text{loc}}}^1(\mu )满足

\begin{eqnarray*} \|f\|_{{\cal E}^{\alpha, q}_{\rho, \eta, \gamma}(\mu)}&: = & \sup\limits_{B}\left\{\frac{1}{\mu(\eta B)} \frac{1}{[\lambda(c_B, r_B)]^{\alpha q}}\int_{B}|f(y)-f_{\widetilde{B}^\rho}|^q \, {\rm d}\mu(y) \right\}^{1/q}\\ &&+ \sup\limits_{B\subset S: B, S \, (\rho), \, \beta_\rho \mbox双倍的} \frac{|f_B-f_S|}{[\lambda(c_S, r_S)]^{\alpha }[\widetilde{K}_{B, S}^{(\rho), 1/(\alpha+1)}]^\gamma}< \infty, \end{eqnarray*}

则称 f 是属于Campanato空间 {\cal E}^{\alpha, q}_{\rho, \eta, \gamma}(\mu) 的.

作者已证明了当 \mu 满足 \rho -弱双倍条件时, {\cal E}^{\alpha, q}_{\rho, \eta, \gamma} q, \rho, \eta, \gamma 取值无关[7],因此,为方便,我们将其简记为 {\cal E}_{\alpha}^{\rho}(\mu) ,并将 \|\cdot\|_ {{\cal E}^{\alpha, q}_{\rho, \eta, \gamma}(\mu)} 简记为 \|\cdot\|_{{\cal E}^{\alpha}_{\rho}(\mu)} ,当 f\in {\cal E}_{\alpha}^{\rho}(\mu) 时,作者证明了

\left(\frac{1}{\mu(\eta B)}\int_{B}|f(x)-f_{\widetilde{B}_k^\rho}|^q\, {\rm d}\mu(x)\right) ^{1/q}\leq C \|f\|_{{\cal E}^{\alpha}_{\rho}(\mu)} [\lambda(c_B, r_{B})]^{\alpha},

其中 f_B: = \frac{1}{\mu( B)}\int_{B}f(x)\, {\rm d}\mu(x) .

设函数 b\in {\cal E}_{\alpha}^{\rho}(\mu) ,相应的Marcinkiewicz积分算子与 b 生成的交换子定义为

\left[b, {\cal M}\right](f)(x): = b(x){\cal M}f(x)-{\cal M}(bf)(x).

首先看一个重要引理.

引理3.1[19]  假设 ({\cal X}, d , \mu) 是一个非齐度量测度空间,令 {\cal M} 是一个Marcinkiewicz积分算子,则以下几种情况是等价的:

\rm(i) 对于某个 p_0\in (1, \infty) , {\cal M} L^{p_0}(\mu) 上是有界的;

\rm(ii) {\cal M} L^1(\mu) L^{1, \infty}(\mu) 有界的;

\rm(iii) 对于 q > 1 , {\cal M} L^q(\mu) 上是有界的;

\rm(iv) {\cal M} H^1(\mu) L^1(\mu) 有界的.

本文我们主要获得了Marcinkiewicz积分算子在非齐度量空间上的Herz空间以及Herz型Hardy空间上的有界性.

定理3.1  设 ({\cal X}, d , \mu) 为一个非齐度量测度空间. Marcinkiewicz积分算子 {\cal M} 由(3.3)式所定义,令 0 < p < \infty, 1 < q < \infty , 0<\alpha < 1-\frac{1}{q} ,并且 \lambda 满足 \eta -弱逆倍条件, \eta \in(0, \min \{\frac{\alpha p}2, \frac{\alpha p'}2, \frac{(1-1/q-\alpha)p}2, \frac{(1-1/q-\alpha)p'}2 \}) . {\cal M} L^2(\mu) 上有界,则 {\cal M} \dot{K}_q^{\alpha, p}(\mu) 上有界.

  对于任意的 f \in \dot{K}_q^{\alpha, p}(\mu) ,由引理2.3知, f(x) = \sum\limits_{j = -\infty}^{+\infty}{\lambda_j b_j(x)} ,其中每个 b_j 都是中心 (\alpha, q) -块, supp( b_j) \subset B_j ,且 \left \|f \right \|_{\dot{K}_q^{\alpha, p}(\mu)} \sim \inf \left\{ {\sum\limits_{j = -\infty}^{+\infty}{{\left| \lambda_j \right|}^p}}\right\}^{\frac{1}{p}}. 因此

\begin{eqnarray*} \left \|{\cal M}f \right \|_{\dot{K}_q^{\alpha, p}(\mu)}^p & = & \sum\limits_{l = -\infty}^{+\infty} [{\lambda(x_0, 2^l)}]^{\alpha p} \left \|({\cal M}f) \chi_l \right \|_{L^q(\mu)}^p\\ &\leqslant& \sum\limits_{l = -\infty}^{+\infty}[{\lambda(x_0, 2^l)}]^{\alpha p} \left\{\sum\limits_{j = -\infty}^{l-2} \left| \lambda_j \right| \left \|({\cal M}b_j)\chi_l\right \|_{L^q(\mu)}\right\}^p\\ &&+\sum\limits_{l = -\infty}^{+\infty}[{\lambda(x_0, 2^l)}]^{\alpha p} \left\{\sum\limits_{j = l-1}^{\infty} \left| \lambda_j \right| \left \|({\cal M}b_j)\chi_l\right \|_{L^q(\mu)}\right\}^p\\ & = :&F_1 + F_2. \end{eqnarray*}

对于 F_2 ,分为以下两种情况进行讨论.

{\text{ (}}{{\text{i}}_{\text{1}}}{\text{) }}当0 < p \leqslant 1 时,由引理3.1, (2.1)式, b_j 的大小条件和 \eta -弱逆倍条件,有

\begin{eqnarray*} F_2 &\leqslant& C \sum\limits_{l = -\infty}^{+\infty} [{\lambda(x_0, 2^l)}]^{\alpha p} \sum\limits_{j = l-1}^{\infty} \left| \lambda_j \right|^p \left \|b_j\right \|_{L^q(\mu)}^p\\ &\leqslant& C \sum\limits_{j = -\infty}^{+\infty} { \left |\lambda_j \right|}^p \sum\limits_{l = -\infty}^{j+1} \left[ \frac{\lambda(x_0, 2^l)}{\lambda(x_0, 2^j)} \right]^{\alpha p} \leqslant C \sum\limits_{j = -\infty}^{+\infty} { \left |\lambda_j \right|}^p. \end{eqnarray*}

{\text{(}}{{\text{i}}_{\text{2}}}{\text{)}} 当1 < p < \infty 时,由引理3.1, (2.1)式, Hölder不等式和 \eta -弱逆倍条件,可得

\begin{eqnarray*} F_2 &\leqslant& \sum\limits_{l = -\infty}^{+\infty}[{\lambda(x_0, 2^l)}]^{\alpha p} \left\{\sum\limits_{j = l-1}^{\infty} \left| \lambda_j \right| \left \|b_j\right \|_{L^q(\mu)}\right\}^p \\ & \leqslant& C \sum\limits_{l = -\infty}^{+\infty} [{\lambda(x_0, 2^l)}]^{\alpha p}\left\{ \sum\limits_{j = l-1}^{\infty} \left| \lambda_j \right|^p [\lambda(x_0, 2^j)]^{-{}\frac{\alpha p}{2}} \right\} \left\{\sum\limits_{j = l-1}^{\infty} [\lambda(x_0, 2^j)]^{-\frac{\alpha p'}{2}} \right\} ^{\frac{p}{p'}} \\ &\leqslant& C \sum\limits_{l = -\infty}^{+\infty} \sum\limits_{j = l-1}^{\infty} { \left |\lambda_j \right|}^p \left[ \frac{\lambda(x_0, 2^l)}{\lambda(x_0, 2^j)} \right]^{\frac{\alpha p}{2}} \leqslant C \sum\limits_{j = -\infty}^{+\infty} { \left |\lambda_j \right|}^p. \end{eqnarray*}

对于 F_1 ,注意到 j \leqslant l-2, x \in C_l, y \in B_j ,则 x \in {\cal X}\setminus 2B_j 意味着 d(x, y)\sim d(x, x_0) \lambda(x, d(x, y)) \sim \lambda(x_0, d(x, x_0)) .因此,由定义3.1, Hölder不等式和定义2.7,知

\begin{eqnarray*} \left \|({\cal M}b_j) \chi_l \right \|_{L^q(\mu)} &\leqslant & C \left\{ \int_{C_l}\left|\int_{0}^{\infty} \left(\int_{d(x, y)<t}\frac{\left|b_j(y) \right|d(x, y)}{\lambda(x, d(x, y))}\, {\rm d}\mu(y)\right)^2\, \frac{{\rm d}t}{t^3}\right|^{\frac{q}{2}}\, {\rm d}\mu(x) \right\}^{\frac{1}{q}}\\ &\leqslant &C \left\{ \int_{C_l} \left(\int_{c d(x, x_0)}^{\infty}\, \frac{{\rm d}t}{t^3}\right)^{\frac{q}{2}}\left( \int_{B_j} \frac{\left|b_j(y) \right| d(x, x_0)}{\lambda(x_0, d(x, x_0))}\, {\rm d}\mu(y)\right)^q \, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \\ &\leqslant &C \left\{ \int_{C_l} \frac{1}{\left[\lambda(x_0, d(x, x_0))\right]^q} \, {\rm d}{\mu(x)} \right\}^{\frac{1}{q}} \int_{B_j}\left|b_j(y) \right|\, {\rm d}{\mu(y)} \\ &\leqslant& C \frac{[\mu(B_l)]^{\frac{1}{q}}\left \|b_j(y) \right \|_{L^q(\mu)} \left[\mu(B_j)\right]^{\frac{1}{q'}}}{\lambda(x_0, 2^l)} \leqslant C \frac{\left[\lambda(x_0, 2^j)\right]^{-\alpha } \left[\lambda(x_0, 2^j)\right]^{1-\frac{1}{q}}}{[\lambda(x_0, 2^l)]^{1-\frac{1}{q}}} . \end{eqnarray*}

根据0 < p \leqslant 1 1 < p < \infty ,将 F_1 分为以下两种情况进行讨论.

(\text{ii}_1) 当0 < p \leqslant 1 时,由Jensen不定式, \eta -弱逆倍条件,有

\begin{eqnarray*} F_1 \leqslant C \sum\limits_{l = -\infty}^{+\infty} \sum\limits_{j = -\infty}^{l-2} { \left |\lambda_j \right|}^p \left[ \frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^l)} \right]^{(1-\frac{1}{q}-\alpha)p} \leqslant C \sum\limits_{j = -\infty}^{+\infty} { \left |\lambda_j \right|}^p. \end{eqnarray*}

(\text{ii}_2) 当1 < p < \infty 时,由Hölder不等式和 \eta -弱逆倍条件可得

\begin{eqnarray*} F_1 &\leqslant& C \sum\limits_{l = -\infty}^{+\infty} \left\{\sum\limits_{j = -\infty}^{l-2} \left| \lambda_j \right| \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^l)} \right]^{(1-\frac{1}{q}-\alpha )} \right\}^p \\ &\leqslant& C \sum\limits_{l = -\infty}^{+\infty} \left\{\sum\limits_{j = -\infty}^{l-2} \left| \lambda_j \right|^p \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^l)} \right]^{(1-\frac{1}{q}-\alpha)\frac{p}{2} } \right\} \left\{\sum\limits_{j = -\infty}^{l-2} \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^l)} \right]^{(1-\frac{1}{q}-\alpha)\frac{p'}{2} } \right\}^{\frac{p}{p'}} \\ & = &C \sum\limits_{l = -\infty}^{+\infty} \sum\limits_{j = -\infty}^{l-2} { \left |\lambda_j \right|}^p \left[ \frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^l)} \right]^{(1-\frac{1}{q}-\alpha)\frac{ p}{2}}\leqslant C \sum\limits_{j = -\infty}^{+\infty} { \left |\lambda_j \right|}^p. \end{eqnarray*}

因此

\left \|{\cal M}f \right \|_{\dot{K}_q^{\alpha, p}(\mu)}^p \leqslant C \sum\limits_{j = -\infty}^{+\infty} { \left |\lambda_j \right|}^p \leqslant C \left \|f \right \|_{\dot{K}_q^{\alpha, p}(\mu)}^p.

定理3.1证毕.

注3.1  由注2.1和定理3.1, Marcinkiewicz积分算子 {\cal M} 也是从 {\widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu)} \dot{K}_{q}^{\alpha, {p}}(\mu) ,或从 \widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu) \dot{K}_{q}^{\alpha, {p}}(\mu) 有界的.

下面,我们主要研究非齐度量测度空间上的Marcinkiewicz积分算子 {\cal M} \widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu) \widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, \epsilon}(\mu) 的有界性.若对于所有的 h\in L_b^{\infty}(\mu) , \int_{{\cal X}} h(y)\, {\rm d}\mu(y) = 0,

\int_{{\cal X}} {\cal M}h(y)\, {\rm d}\mu(y) = 0,

则称 {\cal M} 满足 {\cal M}^{*}1 = 0 .

定理3.2  假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间. {\cal M} 由(3.3)式所定义,令 0 < p \leqslant 1 \leqslant q \leqslant \infty, p \neq q , \alpha \in (0, \delta/v) , \rho\in(1, \infty) , \gamma\in[1, \infty) ,且 \epsilon\in(0, \infty). {\cal M} L^2(\mu) 上有界,且 {\cal M}^*1 = 0 ,则 {\cal M} 是从 \widetilde{H}\dot{K}_{atb, q, \rho}^{\alpha, p, \gamma}(\mu) \widetilde{H}\dot{K}_{mb, q, \rho}^{\alpha, p, \gamma, (\delta-v\alpha)/2}(\mu) 有界的.

  只需证明对于任意的( \alpha, p, q, 2, 2 ) _{\lambda} -原子块 b , {\cal M}b 是一个( \alpha, p, q, 1, (\delta-v\alpha)/2, 2 ) _{\lambda} -分子块,且

\left|{\cal M}b \right|_{\widetilde{H}\dot{K}_{mb, q, 2}^{\alpha, p, 1, (\delta-v\alpha)/2}(\mu)} \leqslant C \left| b \right|_{\widetilde{H}\dot{K}_{atb, q, 2}^{\alpha, p, 2}(\mu)}.

事实上,对于任意的( \alpha, p, q, 2, 2)_{\lambda} -原子块 b , b = \sum\limits_{j = 1}^{2} \lambda_j a_j , supp ( a_j ) \subset B_j \subset B ,且

\begin{eqnarray} \left \| a_j \right \|_{L^q(\mu)} \leqslant[\lambda(x_0, r_B)]^{-\alpha}[\widetilde{K}_{B_j, B}^{(2), p}]^{-2}. \end{eqnarray}
(3.4)

B_0 = 8B, 进一步分解

{\cal M}b = ({\cal M}b)\chi_{B_0} + \sum\limits_{k = 1}^{\infty}({\cal M}b)\chi_{2^k B_0 \setminus {2^{k-1}B_0}} = : W_1 + W_2.

对于 W_1 ,由于 B_j\subset B ,显然 3B_j \subset 8B = B_0 . N_j : = N_{2B_j, B_0}^{(2)}\geqslant -1 .不失一般性,假设 N_j\geqslant 3. 由于 2B_j \subset B_0 \subset 2^5 B_j ,对于其它情况,即当 N_j \in[-1, 3) 时可以转化为 N_j \geqslant 3 .因此

\begin{eqnarray*} W_1 & = &\sum\limits_{j = 1}^{2}\lambda_j({\cal M}a_j)\chi_{2B_j} + \sum\limits_{j = 1}^{2}\sum\limits_{i = 1}^{N_j-2}\lambda_j({\cal M}a_j)\chi_{2^{i+1}B_j\setminus{2^iB_j}}+ \sum\limits_{j = 1}^{2}\lambda_j({\cal M}a_j)\chi_{B_0\setminus{2^{N_j-1}B_j}} \\ & = &:W_{1, 1}+W_{1, 2}+W_{1, 3}. \end{eqnarray*}

对于 W_{1, 1} ,由引理3.1, (3.4)式, (2.1)式,引理2.2,和 \widetilde{K}_{2B_j, B_0}^{(2), p}\geqslant 1 ,对于任意的 j = 1, 2 ,有

\begin{eqnarray*} \left \| ({\cal M}a_j)\chi_{2B_j}\right \|_{L^q(\mu)} &\leqslant& C \left \| a_j\right \|_{L^q(\mu)}\\ & \leqslant& C [\lambda(x_0, r_B)]^{-\alpha}[\widetilde{K}_{B_j, B}^{(2), p}]^{-2} \leqslant C [\lambda(x_0, 4r_{B_0})]^{-\alpha}[\widetilde{K}_{2B_j, 8B}^{(2), p}]^{-2} \\ &\leqslant& c_{11} [\lambda(x_0, 4r_{B_0})]^{-\alpha}[\widetilde{K}_{2B_j, 4B_0}^{(2), p}]^{-1}, \end{eqnarray*}

其中 c_{11} 是不依赖于 a_j j 的正常数.令 \sigma_{j, 1}: = c_{11} \lambda_j, \tau_{j, 1}: = c_{11}^{-1} ({\cal M}a_j)\chi_{2B_j} . W_{1.1} = \sum\limits_{j = 1}^{2}\sigma_{j, 1}\tau_{j, 1} , supp (\tau_{j, 1})\subset 2B_j\subset B_0 ,且

\left \| \tau_{j, 1}\right \|_{L^q(\mu)} \leqslant [\lambda(x_0, 4r_{B_0})]^{-\alpha}[\widetilde{K}_{2B_j, 4B_0}^{(2), p}]^{-1}.

对于 W_{1, 3} ,由于 B_0 \subset 2^{N_j+3}B_j ,有 r_{B_0}\sim r_{2^{N_j-1}B_j} .由(3.1), (2.2), (3.4)和(2.1)式, Hölder不等式,引理2.2,并且 \widetilde{K}_{B_j, B}^{(2), p}\geqslant 1 ,同时注意到 d(x, y)\sim d(x, c_{B_j}) \lambda(x, d(x, y)) \sim \lambda(c_{B_j}, d(x, c_{B_j})) ,可知对于任意的 j = 1, 2,

\begin{eqnarray*} &&\left \| ({\cal M}a_j)\chi_{B_0\setminus{2^{N_j-1}B_j}}\right \|_{L^q(\mu)}\\ & = & \left\{ \int_{8B\setminus{2^{N_j-1}B_j}} \left| {\cal M}a_j(x)\right|^q \, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \\ &\leqslant & C \left\{ \int_{8B\setminus{2^{N_j-1}B_j}}\left|\int_{0}^{\infty} \left(\int_{d(x, y)<t}\frac{\left|a_j(y) \right|d(x, y)}{\lambda(x, d(x, y))}\, {\rm d}\mu(y)\right)^2\, \frac{{\rm d}t}{t^3}\right|^{\frac{q}{2}}\, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \\ &\leqslant& C \left\{\int_{8B\setminus{2^{N_j-1}B_j}} \left(\int_{d(x, c_{B_j})}^{\infty}\, \frac{{\rm d}t}{t^3}\right)^{\frac{q}{2}}\left( \int_{B_j} \frac{\left|a_j(y) \right| d(x, c_{B_j})}{\lambda(c_{B_j}, d(x, c_{B_j}))}\, {\rm d}\mu(y)\right)^q \, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \\ &\leqslant& C \left\{\int_{8B\setminus{2^{N_j-1}B_j}} \frac{1}{[\lambda(c_{B_j}, d(x, c_{B_j}))]^q} \, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \int_{B_j} |a_j(y)|\, {\rm d}\mu(y) \\ &\leqslant& C \frac{[\mu(8B\setminus{2^{N_j-1}B_j})]^{1/q}}{\lambda(c_{B_j}, 2^{N_j-1}r_{B_j})} [\mu(B_j)]^{1/q'} \left \| a_j\right \|_{L^q(\mu)} \leqslant c_{12} [\lambda(x_0, r_{4B_0})]^{-\alpha} [\widetilde{K}_{2B_0, 4B_0}^{(2), p}]^{-1}, \end{eqnarray*}

其中 c_{12} 是不依赖于 a_j j 的正常数.令 \sigma_{j, 3}: = c_{12} \lambda_j, \tau_{j, 3}: = c_{12}^{-1} (Ma_j)\chi_{B_0\setminus{2^{N_j-1}B_j}} ,则 W_{1.3} = \sum\limits_{j = 1}^{2}\sigma_{j, 3}\tau_{j, 3} , supp( \tau_{j, 3})\subset 16B = 2B_0 ,且 \left \| \tau_{j, 3}\right \|_{L^q(\mu)} \leqslant [\lambda(x_0, 4r_{B_0})]^{-\alpha} [\widetilde{K}_{2B_0, 4B_0}^{(2), p}]^{-1}. W_{1, 2} W_{1, 3} 类似有

\begin{eqnarray*} \left \| ({\cal M}a_j)\chi_{2^{i+1}B_j\setminus{2^iB_j}}\right \|_{L^q(\mu)} \leqslant c_{13} \frac{\mu(2^{i+1}B_j)}{\lambda(c_{B_j}, 2^{i}r_{B_j})} [\widetilde{K}_{B_j, B}^{(2), p}]^{-1} [\lambda(x_0, r_{4B_0})]^{-\alpha}[\widetilde{K}_{2^{i+2}B_j, 4B_0}^{(2), p}]^{-1}, \end{eqnarray*}

其中 c_{13} 是不依赖于 a_j , j i 的正常数.令

\sigma_{j, 2}: = c_{13} \lambda_j\frac{\mu(2^{i+1}B_j)}{\lambda(c_{B_j}, 2^{i}r_{B_j})} [\widetilde{K}_{B_j, B}^{(2), p}]^{-1},

\tau_{j, 2}: = \left[c_{13} \frac{\mu(2^{i+1}B_j)}{\lambda(c_{B_j}, 2^{i}r_{B_j})} \right]^{-1} \widetilde{K}_{B_j, B}^{(2), p}(Ma_j)\chi_{2^{i+1}B_j\setminus{2^iB_j}},

W_{1, 2} = \sum\limits_{j = 1}^{2}\sum\limits_{i = 1}^{N_j-2}\sigma_{j, 2}^{(i)} \tau_{j, 2}^{(i)} , supp( \tau_{j, 2})\subset 2^{i+2}B_j\subset 2B_0 ,且

\big\| \tau_{j, 2}^{(i)}\big \|_{L^q(\mu)} \leqslant[\lambda(x_0, 4r_{B_0})]^{-\alpha}[\widetilde{K}_{2^{i+2}B_j, 4B_0}^{(2), p}]^{-1} .

下面估计 W_2 .由几何双倍条件知道对于任意的 k\in {\Bbb N} ,存在一个球覆盖 \left\{B_{k, j} \right\}_{j = 1}^{M_0} ,且它们的势 M_0 \leqslant N_0 8^n ,其中这些球的半径都是 2^{k-3}r_{B_0} , \widetilde{U}_k(B_0): = 2^kB_0\setminus{2^{k-1}B_0} .不失一般性,假设这些球的中心都属于 \widetilde{U}_k(B_0) . C_{k, 1}: = B_{k, 1}, C_{k, l}: = B_{k, l}\setminus \bigcup\limits_{m = 1}^{l-1}B_{k, m} , l = 2, \ldots, M_0 且对于所有的 l = 1, \ldots, M_0 D_{k, l}: = C_{k, l}\cap \widetilde{U}_k(B_0) ,则 \left\{ D_{k, l} \right\}_{l = 1}^{M_0} 是互不相交的, \widetilde{U}_k(B_0) = \bigcup\limits_{l = 1}^{M_0}D_{k, l} ,且对于任意的 l = 1, \ldots, M_0 , D_{k, l}\subset 2B_{k, l} \subset U_k(B_0): = 2^{k+2}B_0\setminus 2^{k-2}B_0. 因此

W_2 = \sum\limits_{k = 0}^{\infty}Mb\sum\limits_{l = 0}^{M_0}\chi_{D_{k, l}} = \sum\limits_{k = 0}^{\infty}\sum\limits_{l = 0}^{M_0}(Mb)\chi_{D_{k, l}}.

因为 \int_{{\cal X}} b(y)\, {\rm d}\mu(y) = 0 ,由(3.2), (2.2), (2.1)和(3.4)式,应用Hölder不等式和引理2.2,同时注意到 4B_{k, l}\subset 2^{k+1}B_0 \widetilde{K}_{B_j, B}^{(2), p} \geqslant 1 ,可以得到

\begin{eqnarray*} &&\left \| ({\cal M}b)\chi_{D_{k, l}}\right \|_{L^q(\mu)} \\ &\leqslant & \left\{ \int_{D_{k, l}}\left|\int_{0}^{\infty} \left(\int_{d(x, y)<t}|K(x, y)-K(x, c_B)|\left|b(y) \right|\, {\rm d}\mu(y)\right)^2\, \frac{{\rm d}t}{t^3}\right|^{\frac{q}{2}}\, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \\ &\leqslant& C \left\{\int_{D_{k, l}} \left(\int_{c d(x, c_B)}^{\infty}\, \frac{{\rm d}t}{t^3}\right)^{q/2} \left|\int_{B}\frac{[d(y, c_B)]^{ \delta}}{[d(x, c_B)]^{\delta-1}\lambda(c_B, d(x, c_B))}\left|b(y) \right|\, {\rm d}\mu(y) \right|^{q} \, {\rm d}\mu(x) \right\}^{\frac{1}{q}} \\ &\leqslant& C \frac{r_B^{\delta}[\mu(D_{k, l})]^{1/q}}{\lambda(c_B, r_{2^{k-1}B_0})(r_{2^{k-1}B_0})^{\delta}} \int_{B}|b(y)| \, {\rm d}\mu(y) \\ &\leqslant& C 2^{-k\delta}[\mu(2^{k+1}B_0)]^{1/q-1} \sum\limits_{j = 1}^{2}|\lambda_j| [\mu(B_j)]^{1/q'} \left \| a_j\right \|_{L^q(\mu)} \\ &\leqslant& C 2^{-k(\delta-v\alpha)}[\mu(2^{k+1}B_0)]^{1/q-1} \sum\limits_{j = 1}^{2}|\lambda_j| [\mu(2^{k+1}B_0)]^{1/q'}[\lambda(x_0, r_{2^{k+2}B_0})]^{-\alpha} \\ &\leqslant& c_{14} 2^{-\frac{k(\delta-v\alpha)}{2}} 2^{-\frac{k(\delta-v\alpha)}{2}} \sum\limits_{j = 1}^{2}|\lambda_j| [\lambda(x_0, r_{2^{k+2}B_0})]^{-\alpha} [\widetilde{K}_{2B_{k, l}, 2^{k+2}B_0}^{(2), p}]^{-1}, \end{eqnarray*}

其中 c_{14} 是不依赖于 b k 的正常数.令 \lambda_{k, l}: = c_{14} 2^{-\frac{k(\delta-v\alpha)}{2}} \sum\limits_{j = 1}^{2}|\lambda_j| , m_{k, l}: = \lambda_{k, l}^{-1} (Mb)\chi_{D_{k, l}}. W_{2} = \sum\limits_{k = 1}^{\infty}\sum\limits_{l = 1}^{M_0}\lambda_{k, l}m_{k, l} , supp( m_{k, l})\subset 2B_{k, l}\subset U_k(B_0) ,且

\left \|m_{k, l} \right \|_{L^q(\mu)} \leqslant2^{-\frac{k(\delta-v\alpha)}{2}} [\lambda(x_0, 2^{k+2}r_{B_0})]^{-\alpha} [\widetilde{K}_{2B_{k, l}, 2^{k+2}B_0}^{(2), p}]^{-1} .

W_1 W_2 的估计,得到 {\cal M}b 是一个( \alpha, p, q, 1, \delta, 2 ) _{\lambda} -分子块,且

\begin{eqnarray*} \left| {\cal M}b \right|_{\widetilde{H}\dot{K}_{mb, q, 2}^{\alpha, p, 1, (\delta-v\alpha)/2}(\mu)}^p & = &\sum\limits_{j = 1}^{2}|\sigma_{j, 1}|^p + \sum\limits_{j = 1}^{2}\sum\limits_{i = 1}^{N_j-1}|\sigma_{j, 2}^{(i)}|^p + \sum\limits_{j = 1}^{2}|\sigma_{j, 3}|^p + \sum\limits_{k = 1}^{\infty}\sum\limits_{l = 1}^{M_0} |\lambda_{k, l}|^p \\ &\leqslant &C \left\{ \sum\limits_{j = 1}^{2}|\lambda_j|^p + \sum\limits_{j = 1}^{2}\sum\limits_{i = 1}^{N_j-2}|\lambda_j|^p\left[\frac{\mu(2^{i+3}B_j)}{\lambda(c_{B_j}, 2^{i}r_{B_j})}\right]^p [\widetilde{K}_{B_j, B}^{(2), p}]^{-p} \right.\\ &&\left. + \sum\limits_{k = 1}^{\infty}\sum\limits_{l = 1}^{M_0}2^{-\frac{k(\delta-v\alpha)}{2}} \sum\limits_{j = 1}^{2}|\lambda_j|^p \right\} \\ &\leqslant &C\left\{ \sum\limits_{j = 1}^{2}|\lambda_j|^p + \sum\limits_{k = 1}^{\infty}2^{-\frac{k(\delta-v\alpha)}{2}} M_0 \sum\limits_{j = 1}^{2}|\lambda_j|^p \right\} \\ &\leqslant& C \sum\limits_{j = 1}^{2}|\lambda_j|^p \leqslant C \left| b \right|_{\widetilde{H}\dot{K}_{atb, q, 2}^{\alpha, p, 2}(\mu)}^p. \end{eqnarray*}

定理3.2得证.

下面证明Marcinkiewicz积分交换子 [b, {\cal M}] \widetilde{H}\dot{K}_{atb, q_1, \rho}^{\alpha_1, p, \gamma}(\mu) \dot{K}_{q_2}^{\alpha_2, p}(\mu) 的有界性.

定理3.3  假设 ({\cal X}, d, \mu) 是一个非齐度量测度空间. {\cal M} 由(3.3)式所定义,令 0 < p \leqslant 1 <q, q_1, q_2< \infty , \frac{1}{q_2} = \frac{1}{q_1}+\frac{1}{q}, \alpha \in (0, \infty), \alpha_1 = 1-\frac{1}{q}, \alpha_1 = \alpha_2+\alpha+\frac{1}{q} , \rho\in(1, \infty) , \gamma\in[1, \infty) , \alpha_2\in(0, 1-1/q_2 +\delta/\nu) , \alpha_1\in(0, 1-1/q_1 +\delta/\nu) , \lambda 满足 \eta -弱逆倍条件, \eta \in(0, \alpha_1) ,且 b\in {\cal E}^{\alpha}_{\rho}(\mu). 则交换子 [b, {\cal M}] 是从 \widetilde{H}\dot{K}_{atb, q_1, \rho}^{\alpha_1, p, \gamma}(\mu) \dot{K}_{q_2}^{\alpha_2, p}(\mu) 有界的.

  对任意的 f \in \widetilde{H}\dot{K}_{atb, q_1, \rho}^{\alpha_1, p, \gamma}(\mu) ,存在( \alpha_1, p, q_1, \gamma, \rho ) _{\lambda} -原子块 b_j, b_j = \sum\limits_{i = 1}^{2}\lambda_{j, i}a_{j, i} , supp( a_{j, i} ) \subset B_{j, i} \subset B_j ,其中 B_j = B(x_0, 2^j) ,使得 f = \sum\limits_{j = -\infty}^{\infty}b_j = \sum\limits_{j = -\infty}^{\infty} \sum\limits_{i = 1}^{2}\lambda_{j, i}a_{j, i} ,则

\begin{eqnarray*} \left \|[b, {\cal M}]f \right \|_{\dot{K}_{q_2}^{\alpha_2, p}(\mu)} & = &\left\{\sum\limits_{k = -\infty}^{+\infty}[{\lambda(x_0, 2^k)}]^{\alpha_2 p} \left \|[b, {\cal M}]f \chi_k\right \|_{L^{q_2}(\mu)}^p\right\}^{1/p}\qquad\\ &\leqslant& \left\{\sum\limits_{k = -\infty}^{+\infty}[{\lambda(x_0, 2^k)}]^{\alpha_2 p} \left\{\sum\limits_{j = -\infty}^{k-3}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right| \left \|[b, {\cal M}]a_{j, i}\chi_k\right \|_{L^{q_2}(\mu)}\right\}^p\right\}^{1/p} \\ &&+\left\{\sum\limits_{k = -\infty}^{+\infty}[{\lambda(x_0, 2^k)}]^{\alpha_2 p} \left\{\sum\limits_{j = k-2}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right| \left \|[b, {\cal M}]a_{j, i}\chi_k\right \|_{L^{q_2}(\mu)}\right\}^p\right\}^{1/p} \\ & = :&G_1 + G_2. \end{eqnarray*}

首先考虑 G_2 ,进一步分解

\begin{eqnarray*} \left \|[b, {\cal M}]a_{j, i}\chi_k\right \|_{L^{q_2}(\mu)} & = &\left\{\int_{C_k}|{\cal M}(b(x)-b(y))a_{j, i}(x)|^{q_2}\, {\rm d}\mu(x)\right\}^{1/q_2} \\ &\leqslant& C \left\{\int_{C_k}|b(x)-b_k|^{q_2}|{\cal M}a_{j, i}(x)|^{q_2}\, {\rm d}\mu(x)\right\}^{\frac{1}{q_2}} \\ && +C \left\{\int_{C_k}|{\cal M}(b_k-b(x))a_{j, i}(x)|^{q_2}\, {\rm d}\mu(x)\right\}^{\frac{1}{q_2}}\\ & = :&G_{2, 1} + G_{2, 2}. \end{eqnarray*}

由Hölder不等式,引理3.1和原子的大小条件,可得

\begin{eqnarray*} G_{2, 1} &\leqslant& C \left\{\int_{C_k}|b(x)-b_k|^{q}\, {\rm d}\mu(x)\right\}^{1/q} \left\{\int_{C_k}|{\cal M}a_{j, i}(x)|^{q_1}\, {\rm d}\mu(x)\right\}^{1/q_1} \\ &\leqslant &C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)}[\lambda(x_0, r_{B_k})]^{\alpha+1/q} [\lambda(x_0, r_{B_j})]^{-\alpha_1}. \\ G_{2, 2} &\leqslant &C \left\{\int_{C_k}|b(x)-b_k|^{q_2}|a_{j, i}|^{q_2}\, {\rm d}\mu(x)\right\}^{1/q_2} \\ &\leqslant &C \left\{\int_{C_k}|b(x)-b_k|^{q}\, {\rm d}\mu(x)\right\}^{1/q} \left\{\int_{C_k}|a_{j, i}(x)|^{q_1}\, {\rm d}\mu(x)\right\}^{1/q_1} \\ &\leqslant &C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)}[\lambda(x_0, r_{B_k})]^{\alpha+1/q} [\lambda(x_0, r_{B_j})]^{-\alpha_1}. \end{eqnarray*}

因此,由 \eta -弱逆倍条件,得

\begin{eqnarray*} G_{2} &\leqslant &C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{k = -\infty}^{+\infty} \left\{\sum\limits_{j = k-2}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right| \left[\frac{\lambda(x_0, 2^k)}{\lambda(x_0, 2^j)}\right]^{\alpha_1} \right\}^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p \left(\sum\limits_{k = -\infty}^{j+2}\left[\frac{\lambda(x_0, 2^k)}{\lambda(x_0, 2^j)}\right]^{\alpha_1} \right)^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p\right\}^{1/p}. \end{eqnarray*}

下面估计 G_{1} ,注意到 j \leqslant k-3, x \in C_k, y \in B_j ,则

\begin{eqnarray*} &&\left \|[b, {\cal M}]a_{j, i}\chi_k\right \|_{L^{q_2}(\mu)}\\ &\leqslant&\left\{\int_{C_k}\left|\int_{0}^{\infty}\left(\int_{d(x, y)<t} (b(x)-b_j)K(x, y)a_{j, i}(y)\, {\rm d}\mu(y)\right)^2\frac{{\rm d}t}{t^3}\right|^{q_2/2}\, {\rm d}\mu(x)\right\}^{1/q_2} \\ &&+ \left\{\int_{C_k}\left|\int_{0}^{\infty}\left(\int_{d(x, y)<t} (b_j-b(y))K(x, y)a_{j, i}(y)\, {\rm d}\mu(y)\right)^2\frac{{\rm d}t}{t^3}\right|^{q_2/2}\, {\rm d}\mu(x)\right\}^{1/q_2} \\ & = :&G_{1, 1} +G_{1, 2}. \end{eqnarray*}

对于 G_{1, 1} ,由Hölder不等式和 a_{j, i} 的消失性条件及大小条件,得

\begin{eqnarray*} G_{1, 1}& \leqslant& \left\{\int_{C_k}\!\left\{\int_{0}^{\infty}\!\!\left(\int_{d(x, y)<t} |b(x)-b_j||K(x, y)-K(x, x_0)||a_{j, i}(y)|{\rm d}\mu(y)\right)^2\frac{{\rm d}t}{t^3}\!\right\}^{\frac{q_2}{2}}\!\!{\rm d}\mu(x)\right\}^{\frac{1}{q_2}} \\ &\leqslant& C\left\{\int_{C_k}\left(\int_{c d(x, x_0)}^{\infty}\, \frac{{\rm d}t}{t^3}\right)^{q_2/2} \left\{\int_{B_j}\frac{|b(x)-b_j|[d(y, x_0)]^{\delta }|a_{j, i}(y)|}{[d(x, x_0)]^{\delta-1 }\lambda(x_0, d(x, x_0))}\, {\rm d}\mu(y) \right\}^{q_2}\, {\rm d}\mu(x)\right\}^{1/q_2} \\ &\leqslant& C2^{(j-k)\delta}[\lambda(x_0, 2^k)]^{-1} \left\{\int_{C_k} |b(x)-b_j|^{q_2}\, {\rm d}\mu(x) \right\}^{1/q_2} \int_{B_j} |a_{j, i}(y)|\, {\rm d}\mu(y)\\ &\leqslant& C 2^{(j-k)\delta} \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)}(k-j) [\lambda(x_0, 2^k)]^{\alpha+1/q+1/q_1-1}[\lambda(x_0, 2^j)]^{-\alpha_1+1-1/q_1}.\qquad\qquad\qquad\qquad\end{eqnarray*}

因此当 \alpha_1 \in (0, 1-1/q_1) 时,有

\begin{eqnarray*} G_{1, 1} &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{k = -\infty}^{+\infty} \left\{\sum\limits_{j = -\infty}^{k-3}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|2^{(j-k)\delta} (k-j) \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^k)}\right]^{1-1/q_1-\alpha_1} \right\}^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p \left(\sum\limits_{k = j+3}^{+\infty} 2^{(j-k)\delta} (k-j) \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^k)}\right]^{1-1/q_1-\alpha_1} \right)^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p\right\}^{1/p}. \end{eqnarray*}

\alpha_1 \in [1-1/q_1, 1-1/q_1+\delta/\nu) 时,有

\begin{eqnarray*} G_{1, 1} &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{k = -\infty}^{+\infty} \left\{\sum\limits_{j = -\infty}^{k-3}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|2^{(j-k)\delta} (k-j) 2^{(j-k)\nu(1-1/q_1-\alpha_1)} \right\}^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p \left(\sum\limits_{k = j+3}^{+\infty} 2^{(j-k)(\delta+\nu(1-1/q_1-\alpha_1))} (k-j) \right)^p\right\}^{1/p} \\ &\leqslant &C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p\right\}^{1/p}. \end{eqnarray*}

类似于 G_{1, 1} ,同样可以得到如下估计

\begin{eqnarray*} G_{1, 2} &\leqslant& C \left\{\int_{C_k}\left\{\int_{0}^{\infty}\left(\int_{d(x, x_0)<t} \frac{|b_j-b(y)|[d(y, x_0)]^{\delta }|a_{j, i}(y)|}{[d(x, x_0)]^{\delta-1 }\lambda(x_0, d(x, x_0))}{\rm d}\mu(y)\right)^2\frac{{\rm d}t}{t^3}\right\}^{\frac{q_2}{2}}{\rm d}\mu(x)\right\}^{\frac{1}{q_2}} \\ &\leqslant& C 2^{(j-k)\delta}[\lambda(x_0, 2^k)]^{-1} \left\{\int_{C_k} \, {\rm d}\mu(x) \right\}^{\frac{1}{q_2}} \int_{B_j} |b(y)-b_j||a_{j, i}(y)|\, {\rm d}\mu(y) \\ &\leqslant &C 2^{(j-k)\delta}\|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)}[\lambda(x_0, 2^k)]^{-1+1/q_2}[\lambda(x_0, 2^j)]^{-\alpha_2+1-1/q_2}. \end{eqnarray*}

\alpha_2 \in (0, 1-1/q_2) 时,有

\begin{eqnarray*} G_{1, 2} &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{k = -\infty}^{+\infty} \left\{\sum\limits_{j = -\infty}^{k-3}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|2^{(j-k)\delta} \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^k)}\right]^{-\alpha_2+1-1/q_2} \right\}^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}_{\alpha}^{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p\right\}^{1/p}. \end{eqnarray*}

\alpha_2 \in [1-1/q_2, 1-1/q_2+\delta/\nu) 时,有

\begin{eqnarray*} G_{1, 2} &\leqslant& C \|b\|_{{\cal E}^{\alpha}_{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p \left(\sum\limits_{k = j+3}^{+\infty} 2^{(j-k)\delta} \left[\frac{\lambda(x_0, 2^j)}{\lambda(x_0, 2^k)}\right]^{-\alpha_2+1-1/q_2} \right)^p\right\}^{1/p} \\ &\leqslant& C \|b\|_{{\cal E}_{\alpha}^{\rho}(\mu)} \left\{\sum\limits_{j = -\infty}^{+\infty}\sum\limits_{i = 1}^{2}\left| \lambda_{j, i} \right|^p\right\}^{1/p}. \end{eqnarray*}

定理3.3证毕.

参考文献

Coifman R R , Weiss G . Analyse Harmonique Non-Commutative sur Certains Espaces Homogénes. Berlin: Springer-Verlag, 1971

[本文引用: 2]

Tolsa X .

BMO, H1 and Calderón-Zygmund operators for non-doubling measures

Math Ann, 2001, 319 (1): 89- 149

DOI:10.1007/PL00004432     

Hu G E , Meng Y , Yang D C .

Endpoint estimate for maxmial commutators with non-doubling measures

Acta Math Sci, 2006, 26B (2): 271- 280

URL    

Lin H B , Meng Y , Yang D C .

Weighted estimates for commutators of multilinear Calderón-Zygmund operators with non-doubling measures

Acta Math Sci, 2010, 30B (1): 1- 18

URL    

Yang D C , Yang D Y , Hu G E . The Hardy Space H1 with Non-Doubling Measures and Their Application. Berlin: Springer-Verlag, 2013

[本文引用: 1]

Hytönen T .

A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa

Publ Mat, 2010, 54, 485- 504

DOI:10.5565/PUBLMAT_54210_10      [本文引用: 5]

Fu X , Lin H B , Yang D C , et al.

Hardy spaces Hp over non-homogeneous metric measure spaces and their applications

Sci China Math, 2015, 58, 309- 388

DOI:10.1007/s11425-014-4956-2      [本文引用: 5]

韩瑶瑶, 赵凯.

非齐度量测度空间上的Herz型Hardy空间

中国科学:数学, 2018, 48 (10): 1315- 1338

URL     [本文引用: 9]

Han Y Y , Zhao K .

Herz type Hardy spaces on non-homogeneous metric measure spaces

Sci Sin Math, 2018, 48 (10): 1315- 1338

URL     [本文引用: 9]

Stein E M .

On the functions of Littlewood-Paley, Lusin and Marcinkiewicz

Trans Amer Math Soc, 1958, 88 (2): 430- 466

DOI:10.1090/S0002-9947-1958-0112932-2      [本文引用: 1]

Ding Y , Fan D S , Pan Y B .

Weighted boundedness for a class of rough Marcinkiewicz integrals

Indiana Univ Math J, 1999, 48 (3): 1037- 1055

URL    

Chen D X , Chen J C .

Boundedness of Marcinkiewicz integrals with rough kernels on Herz spaces

Adv Math (China), 2005, 34 (5): 591- 599

URL    

Mo H X , Lu S Z .

Boundedness of generalized high commutators of Marcinkiewicz integrals

Acta Math Sci, 2007, 27B (4): 852- 866

URL    

程美芳, 束立生.

Marcinkiewicz积分算子交换子在Hardy空间及Herz型Hardy空间上的有界性

数学物理学报, 2008, 28A (2): 222- 231

URL    

Cheng M F , Shu L S .

Boundedness of the commutator of Marcinkiewicz integral on Hardy space and Herz-type Hardy space

Acta Math Sci, 2008, 28A (2): 222- 231

URL    

陶祥兴, 位瑞英.

可变核Marcinkiewicz积分交换子在Herz型Hardy空间上的有界性

数学物理学报, 2009, 29A (6): 1508- 1517

URL    

Tao X X , Wei R Y .

Boundedness of commutators related to Marcinkiewicz integrals with variable kernels in Herz-type Hardy spaces

Acta Math Sci, 2009, 29A (6): 1508- 1517

URL    

王洪彬, 傅尊伟, 刘宗光.

变指标Lebesgue空间上的Marcinkiewicz积分高阶交换子

数学物理学报, 2012, 32A (6): 1092- 1101

DOI:10.3969/j.issn.1003-3998.2012.06.009      [本文引用: 1]

Wang H B , Fu Z W , Liu Z G .

Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces

Acta Math Sci, 2012, 32A (6): 1092- 1101

DOI:10.3969/j.issn.1003-3998.2012.06.009      [本文引用: 1]

Heinonen J . Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001

[本文引用: 1]

Hytönen T , Yang D C , Yang D Y .

The Hardy space H1 on non-homogeneous metric spaces

Math Proc Cambridge Philos Soc, 2012, 153, 9- 31

DOI:10.1017/S0305004111000776      [本文引用: 1]

王萍.非齐度量测度空间上的几类算子[D].兰州:西北师范大学, 2016

URL     [本文引用: 1]

Wang P. Some Operators on Non-Homogeneous Metric Measure Spaces[D]. Lanzhou: Northwest Normal University, 2016

URL     [本文引用: 1]

Lin H B , Yang D C .

Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces

Sci China Math, 2014, 57, 123- 144

DOI:10.1007/s11425-013-4754-2      [本文引用: 2]

/