紧黎曼流形上Hardy-Littlewood-Sobolev不等式的极值问题:次临界逼近法
Extremal Problems of Hardy-Littlewood-Sobolev Inequalities on Compact Riemannian Manifolds: the Approximation Method from Subcritical to Critical
通讯作者:
收稿日期: 2019-03-13
基金资助: |
|
Received: 2019-03-13
Fund supported: |
|
令(Mn,g)为n维无边紧黎曼流形, 的极值问题.首先,利用算子$I_\alpha: L^p(M^n)\rightarrow L^q(M^n)$在次临界情形(即$p>\frac{nq}{n+\alpha q}$)时的紧致性,证明$p>\frac{nq}{n+\alpha q}$时极值函数$f_p\in L^p(M^n)$的存在性;进而证明函数列$\{f_p\}$为临界情形时HLS不等式的最佳常数的极值列;最后,结合极值列$\{f_p\}$在$L^{\frac{nq}{n+\alpha q}}(M^n)$中的一致有界性,利用文献[
关键词:
Let $(M^n,g)$ be a $n$-dimensional compact Riemannian manifolds, $0<\alpha<n$ and $q>\frac{n}{n-\alpha}$. This paper is mainly devoted to study the extremal problems of the following HLS inequalities: Firstly, we prove that $I_\alpha: L^p(M^n)\rightarrow L^q(M^n)$ with $p>\frac{nq}{n+\alpha q}$ is compact and then get the existence of extremal functions $f_p, p>\frac{nq}{n+\alpha q}$. Secondly, we find that the function sequence $\{f_p\}$ is a maximizing sequence for the sharp constant of HLS inequality with $p=\frac{nq}{n+\alpha q}$. Finally, by the Concentration-Compactness principle established in [
Keywords:
本文引用格式
张书陶, 韩亚洲.
Zhang Shutao, Han Yazhou.
1 引言
设
然后建立了
命题1.1[18, Proposition 1.1] 设
则存在正常数
进一步,对任意
注1.2 如许多文献所取,参数
如上所述, (1.3)式的最佳常数和极值函数在分析和几何研究中非常重要,故而下面研究其极值问题.首先,定义(1.3)式的最佳常数为
特别,记
定理1.3[32, Proposition 1.2 & Theorem 1.3] 设命题1.1的条件成立,则
众所周知,在Yamabe问题的讨论中,利用次临界问题逼近临界问题是一种非常重要的方法,故而本文拟采用次临界逼近法来重新证明定理1.3.在利用次临界逼近法讨论Yamabe问题中,次临界极值函数的一致估计非常重要,这也是Trudinger指出Yamabe出现错误的地方,具体描述见文献[25]及其中引用文献.而对于HLS的极值问题,次临界情形则对应于指数大于临界指数的情形,即
本文计划如下:首先在第2节引入一些已知结论;然后在第3节给出一类紧性定理,从而得到次临界情形的极值函数;最后在第4节利用次临界逼近法和集中列紧原理完成定理1.3的证明.
2 一些已知结论
首先给出
定理2.1[29, Theorem 2.3] & [27, Theorem 2.1] 存在函数
从而
若记
特别对于保形情形,即当
此时
下面给出无边紧黎曼流形上的一些结果.
引理2.2(Young不等式[18, Lemma 2.1]) 对紧黎曼流形
则存在常数
其中
引理2.3(第二集中列紧原理[32, Lemma 3.1]) 取有界列
若
ⅰ)存在
其中
ⅱ)存在可列个非负实数
其中
特别
3 次临界极值问题
命题3.1(紧致性) 如果
且算子
证 取
且常数
而对于紧致性的讨论,证明过程与文献[32]中命题2.3的证明过程相同,故而略去.
给定
则可得如下存在性定理.
定理3.2(存在性) 在引理3.1的条件下,最佳常数
证任取
结合自反性和
由
从而由
注3.3 若
若存在
4 临界极值问题
引理4.1 当
注 由定理3.2,存在非负函数
令
则
又因
所以
设光滑函数列
任取
先令
再令
结合(4.1)式完成证明.
引理4.2 函数列
证 由
令
定理1.3的证明
下面的证明中,不失一般性,设在度量张量
由定理3.2知:对任意
由Hölder不等式可得
又注意到
所以
为两族有界测度,从而存在子列(仍记为
由第二集中列紧原理(引理2.3),存在可列点集
且
所以
下面将证明
产生矛盾,所以
即
参考文献
Global existence and convergence for a higher order flow in conformal geometry
,
A relation between pointwise convergence of functions and convergence of functionals
,DOI:10.1090/S0002-9939-1983-0699419-3
An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature
,
Existence of conformal metrics with constant Q-curvature
,DOI:10.4007/annals.2008.168.813 [本文引用: 1]
Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space
,DOI:10.1016/j.aim.2017.03.007 [本文引用: 1]
Nonlinear integral equations on bounded domains
,DOI:10.1016/j.jfa.2018.05.020 [本文引用: 1]
Sharp Hardy-Littlewood-Sobolev inequality on the upper half space
,DOI:10.1093/imrn/rnt213 [本文引用: 1]
Reversed Hardy-Littewood-Sobolev inequality
,
Sharp constants in several inequalities on the Heisenberg group
,DOI:10.4007/annals.2012.176.1.6 [本文引用: 1]
Singular solutions of fractional order conformal Laplacians
,
Fractional conformal Laplacians and fractional Yamabe problems
,
Scattering matrix in conformal geometry
,
Application of the method of moving planes to conformally invariant equations
,
A fully nonlinear equation on four-manifolds with positive scalar curvature
,
Prescribing symmetric functions of the eigenvalues of the Ricci tensor
,DOI:10.4007/annals.2007.166.475 [本文引用: 1]
Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications
,DOI:10.1016/j.jde.2015.06.032 [本文引用: 5]
An integral equation in conformal geometry
,DOI:10.1016/j.anihpc.2007.03.006
Sharp integral inequalities for Harmonic functions
,
On a fractional Nirenberg problem, part Ⅰ:blow up analysis and compactness of solutions
,DOI:10.4171/JEMS/456 [本文引用: 1]
On a fractional Nirenberg problem, part Ⅱ:existence of solutions
,
The Nirenberg problem and its generalizations:A unified approach
,
The Yamabe problem
,DOI:10.1090/S0273-0979-1987-15514-5 [本文引用: 1]
The concentration-compactness principle in the calculus of variations, the limit case, Part 1
,
The concentration-compactness principle in the calculus of variations, the limit case, Part 2
,
On some conformally invariant fully nonlinear equations Ⅱ:Liouville, Harnack and Yamabe
,DOI:10.1007/BF02588052 [本文引用: 1]
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities
,
Sharp reversed Hardy-Littlewood-Sobolev inequality on Rn
,DOI:10.1007/s11856-017-1515-x [本文引用: 1]
Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space R+n
,
/
〈 | 〉 |