数学物理学报, 2020, 40(1): 103-131 doi:

论文

含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性

刘玉记,

Solvability of BVPs for Impulsive Fractional Langevin Type Equations Involving Three Riemann-Liouville Fractional Derivatives

Liu Yuji,

收稿日期: 2019-01-17  

基金资助: 广州市科技计划项目.  201707010425
广州市科技计划项目.  201804010350

Received: 2019-01-17  

Fund supported: 广州市科技计划项目.  201707010425
广州市科技计划项目.  201804010350

作者简介 About authors

刘玉记,E-mail:liuyuji888@sohu.com , E-mail:liuyuji888@sohu.com

摘要

nlk为正整数且α∈(n-1,n),β∈(l-1,l),γ∈(k-1,k).该文首先利用迭代方法给出具有三个分数阶导数的Langevin方程

的连续通解.然后,该文使用数学归纳法获得脉冲分数阶Langevin方程

分片连续通解.接下来,该文运用获得的结果研究具有三个分数阶导数αβ∈(1,2),γ∈(0,1)的非线性脉冲Langevin方程的一类边值问题,通过将其化为积分方程,运用不动点定理建立这类边值问题解的存在性定理.最后,该文给出例子说明了主要结果的应用.

关键词: 迭代方法 ; 多项脉冲分数阶Langevin方程 ; Riemann-Liouville分数阶导数 ; 边值问题 ; 积分方程

Abstract

Let $n,l,k$ be positive integers and $\alpha\in (n-1,n)$, $\beta\in (l-1,l)$ and $\gamma\in (k-1,k)$. Firstly the continuous general solutions of the Langevin equation with three fractional derivatives $[D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t)=P(t)$ are presented by using iterative method. Secondly the piecewise continuous general solutions of the impulsive Langevin equation with three fractional derivatives $[D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t)=P(t),t\in (t_i,t_{i+1}],i\in {\Bbb N} _0^m$ are given by using mathematical in{\rm d}uction method. Thirdly, by using the obtained results, a boundary value problem for the impulsive Langevin fractional differential equation with three Riemann-Liouville fractional derivatives of order $\alpha,\beta\in (1,2),\gamma\in (0,1)$ is converted to an integral equation. Existence results for solutions of the mentioned problem are established. Some examples are given to show readers the applications of the main results.

Keywords: Iterative method ; Impulsive multi-term fractional Langevin equation ; Riemann-Liouville fractional derivative ; Boundary value problem ; Integral equation

PDF (413KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘玉记. 含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性. 数学物理学报[J], 2020, 40(1): 103-131 doi:

Liu Yuji. Solvability of BVPs for Impulsive Fractional Langevin Type Equations Involving Three Riemann-Liouville Fractional Derivatives. Acta Mathematica Scientia[J], 2020, 40(1): 103-131 doi:

1 引言

分数阶微分方程在物理学、化学等学科中有重要应用.许多作者从理论角度研究分数阶微分方程的解的动力学性质,参见文献[9-10, 17]. 1908年, Langevin在研究粒子布朗运动时提出一类常微分方程[6]

在复杂介质描述时, Langevin型常微分方程不足以准确描述系统的动力学性质,因此,文献[2-5]提出并研究具有两个分数阶导数的Langevin方程

Lizana等[14]利用调和技巧建立了一类分数阶Langevin方程. Gambo等[7]给出了具有分数阶Hadsmard导数的Langevin方程的Caputo型改进.分数阶Langevin方程的近期研究工作可参考文献[2-3, 5, 7, 14, 21-22, 24-25]. Ahmad等[2, 4-5]研究了具有两个分数阶导数的非线性Langevin方程解的存在性. Tariboon等利用不同的不动点定理研究了具有Hadamard-Caputo型分数阶导数的非线性Langevin方程的解的存在性与唯一性(参见文献[16, 18-19, 22, 27-28]). Tariboon和Ntouyas[21]研究了脉冲$ q $ -差分Langevin方程的边值问题的解的存在性与唯一性.

近年来,许多作者研究了脉冲分数阶微分方程边值问题的解的存在性与唯一性,参见文献[1, 11, 13, 26]和综述论文[11]. Liu获得了如下脉冲分数阶微分方程的分片连续通解(见文献[12,定理3.3.1])

文献[8, 23, 29]研究具有两个Caputo分数阶导数的脉冲Langevin型方程的非局部边值问题的解的存在性.我们知道高阶分数阶微分方程的初、边值条件表现非常复杂.而且少有文献研究具有三个分数阶导数的脉冲Langevin型方程

本文填补这一空白,研究如下具有三个分数阶导数的脉冲Langevin方程的反周期边值问题

$ \begin{align} \left\{ \begin{array}{l} [D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t) = P(t)f\left(t, x(t)\right), a.e., t\in (t_i, t_{i+1}], i\in {\Bbb N} _0^{m}, \\ \Delta I_{0^+}^{2-\beta} x(t_i) = I_1(t_i, x(t_i)), i\in {\Bbb N} _1^{m-1}, \\ \Delta D_{0^+}^{\beta-1}x(t_i) = I_2(t_i, x(t_i)), i\in {\Bbb N} _1^{m-1}, \\ \Delta (D_{0^+}^{\alpha-1} D_{0^+}^\beta-\lambda I_{0^+}^{1-\gamma}) x(t_i) = I_3(t_i, x(t_i)), i\in {\Bbb N} _1^{m}, \\ \Delta I_{0^+}^{2-\alpha}D_{0^+}^\beta x(t_i) = I_4(t_i, x(t_i)), i\in {\Bbb N} _1^{m}, \\ I_{0^+}^{2-\beta} x(0) = -I_{0^+}^{2-\beta}x(1), \;\Delta D_{0^+}^{\beta-1}x(0) = -\Delta D_{0^+}^{\beta-1}x(1), \\ (D_{0^+}^{\alpha-1} D_{0^+}^\beta-\lambda I_{0^+}^{1-\gamma}) x(0) = -(D_{0^+}^{\alpha-1} D_{0^+}^\beta-\lambda I_{0^+}^{1-\gamma}) x(1), \\ I_{0^+}^{2-\alpha}D_{0^+}^\beta x(0) = -I_{0^+}^{2-\alpha}D_{0^+}^\beta x(1), \end{array}\right. \end{align} $

其中

(a) $ \alpha, \beta\in (1, 2), \gamma\in (0, 1) $, $ \lambda\in {{\Bbb R}} $, $ D_{0^+}^* $表示具有起点0的$ *>0 $阶Riemann-Liouville分数阶导数,见定义2.2;

(b)设$ a<b $为整数,记$ {\Bbb N} _a^b = \{a, a+1, a+2, \cdots, b\} $, $ C_i\in {{\Bbb R}} (i\in {\Bbb N} _1^4) $为常数, $ 0 = t_0<t_1<t_2<\cdots<t_{m}<t_{m+1} = 1 $;

(c) $ f:[0, 1]\times {{\Bbb R}} \to {{\Bbb R}} $时Carathéodory函数,见定义2.3, $ I_j:\{t_i:i\in {\Bbb N} _1^{m}\}\times {{\Bbb R}} \to {{\Bbb R}} $时离散Carathódory函数($ j\in {\Bbb N} _1^4 $),见定义2.4;

(d) $ P:[0, 1]\to {{\Bbb R}} $是连续函数.

假设

$ u $满足BVP(1.1)的每一个方程,我们称函数$ u:(0, 1]\to {{\Bbb R}} $为BVP(1.1)的分片连续解.由于含Caputo导数的方程$ {}^cD_{0^+}^a x(t) = 0, t\in [0, 1] $的解在区间$ [0, 1] $连续,而含Riemann-Liouville导数的方程$ D_{0^+}^a x(t) = 0, t\in (0, 1] $的解在区间$ (0, 1] $可以无界.另外,我们注意到$ D_{0^+}^\alpha D_{0^+}^\beta\not = D_{0^+}^{\alpha+\beta} $ (参见文献[9]).因此Riemann-Liouville分数阶导数不同于Caputo分数阶导数.

本文的首先给出线性Langevin方程$ [D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t) = P(t) $的连续通解.然后建立脉冲Langevin方程$ [D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t) = P(t), t\in (t_i, t_{i+1}], i\in {\Bbb N} _0^m $的分片连续通解.最后应用所得结果将BVP(1.1)转化为积分方程,应用Schauder不动点定理[15]建立BVP(1.1)的解的存在性结果.所得结果推广了已有文献[8, 23, 29]的定理. BVP (1.1)中的边界条件可视为反周期边界条件.

本文后段安排如下:第2节,首先介绍基本概念,然后用三个小节分别建立线性分数阶Langevin方程的连续通解,线性脉冲分数阶Langevin方程的分片连续通解以及建立BVP(1.1)的等价积分方程.第3节,证明BVP(1.1)的解的存在性定理.第4节,举例说明主要所获得结果的应用.

2 概念和预备结果

本节首先介绍基本概念,见文献[17].然后获得线性分数阶Langevin方程的通解,其次给出线性脉冲分数阶Langevin方程的通解,最后将BVP(1.1)转化为等价积分方程.

$ L^1(a, b) $表示区间$ (a, b) $上的可积函数集合, $ C^0[a, b] $表示区间$ [a, b] $的连续函数集合.设$ \phi\in L^1(a, b) $,记$ ||\phi||_1 = \int_a^b|\phi(s)|{\rm d}s $.$ \phi\in C^0[a, b] $,记$ ||\phi||_0 = \max\limits_{t\in [a, b]}|\phi(t)| $. Gamma函数$ \Gamma(\alpha) $, Beta函数$ {\bf B}(p, q) $和Mitag-Leffler函数$ {\bf E}_{\alpha, \delta}(x) $分别定义为

定义2.1[17]  设$ \alpha>0, a\in {{\Bbb R}} $.函数$ h:(a, +\infty)\mapsto {{\Bbb R}} $$ a $为起点的$ \alpha $积分定义为$ {}^cI_{a^+}^{\alpha}h(t) = \frac{1}{\Gamma(\alpha)}\int_a^t(t-s)^{\alpha-1}h(s){\rm d}s, t>a . $

定义2.2[17]  设$ n $为正整数, $ \alpha\in (n-1, n), a\in {{\Bbb R}} $.函数$ h:(a, +\infty)\mapsto {{\Bbb R}} $$ a $为起点的$ \alpha $阶Riemann-Liouville导数(简称Riemann-Liouville分数阶导数)定义为

定义2.3  设$ h:(0, 1)\times {{\Bbb R}} \mapsto {{\Bbb R}} $.如果

(ⅰ)对任意$ x\in {{\Bbb R}} $, $ t\mapsto h\left(t, (t-t_i)^{2-\beta}x\right) $在区间$ (t_i, t_{i+1}](i\in {\Bbb N} _0^m) $可积;

(ⅱ)对任意$ t\in (t_i, t_{i+1}](i\in {\Bbb N} _0^m) $, $ x\mapsto h\left(t, (t-t_i)^{2-\beta}x\right) $$ {{\Bbb R}} $上连续;

(ⅲ)对任意$ r>0 $,存在$ M_r>0 $满足当$ |x|\le r $时成立

则称函数$ f $为Carathéodory函数.

定义2.4  设$ I:\{t_i:i\in {\Bbb N} _1^m\}\times {{\Bbb R}} \mapsto {{\Bbb R}} $.如果

(ⅰ)对任意$ i\in {\Bbb N} _1^m $, $ x\mapsto I\left(t_i, (t_i-t_{i-1})^{2-\beta}x\right) $$ {{\Bbb R}} $连续;

(ⅱ)对任意$ r>0 $,存在$ M_{I, r}>0 $满足当$ |x|\le r $时成立

则称$ I $时离散Carathéodory函数.

定义2.5  Banach空间:设$ n $为正整数, $ \beta\in (1, 2) $, $ 0 = t_0<t_1<\cdots<t_m<t_{m+1} = 1 $.

定义范数

$ PC^{0}_{2-\beta}(0, 1] $是Banach空间.

2.1 LFDEs的连续解

$ n, l, k $为正整数, $ \lambda\in {{\Bbb R}} $, $ \alpha\in (n-1, n) $, $ \beta\in (l-1, l), \gamma\in (k-1, k) $$ k\le \alpha+\beta $.本小节求如下线性分数阶Langevin方程(简称LFDE)的通解

$ \begin{equation} D_{0^+}^\alpha D_{0^+}^\beta x(t)-\lambda D_{0^+}^\gamma x(t) = g(t), \; {\rm a.e., }\ t\in (0, 1]. \end{equation} $

$ x_i(i\in {\Bbb N} _1^{\max\{k, n\}}) $, $ y_j(j\in {\Bbb N} _1^l) $为给定常数.考虑初值条件

$ \begin{equation} \left\{ \begin{array}{l} I_{0^+}^{l-\beta}x(0) = y_l, \;D_{0^+}^{\beta-i}x(0) = y_i, i\in {\Bbb N} _1^{l-1}; \\ \left\{\begin{array}{lr} \begin{array}{l} (I_{0^+}^{n-\alpha} D_{0^+}^\beta -\lambda I_{0^+}^{k-\gamma})x(0) = x_n, \\ (D_{0^+}^{\alpha-j}D_{0^+}^\beta -\lambda D_{0^+}^{\gamma-j})x(0) = x_j, j\in {\Bbb N} _1^{k-1}, \end{array} &k = n; \\ \begin{array}{l} (D_{0^+}^{\alpha-k}D_{0^+}^\beta -\lambda I_{0^+}^{k-\gamma})x(0) = x_k, \\ (D_{0^+}^{\alpha-j}D_{0^+}^\beta -\lambda D_{0^+}^{\gamma-j})x(0) = x_j, j\in {\Bbb N} _1^{k-1}, \\ D_{0^+}^{\alpha-j}D_{0^+}^\beta x(0) = x_j, j\in {\Bbb N} _{k+1}^n, \end{array}&k<n; \\ \begin{array}{l} (I_{0^+}^{n-\alpha}D_{0^+}^\beta -\lambda D_{0^+}^{\gamma-n})x(0) = x_n, \\ (D_{0^+}^{\alpha-j}D_{0^+}^\beta -\lambda D_{0^+}^{\gamma-j})x(0) = x_j, j\in {\Bbb N} _1^{n-1}, \\ -\lambda D_{0^+}^{\gamma-j} x(0) = x_j, j\in {\Bbb N} _{n+1}^k, \end{array}&k>n; \end{array}\right. \end{array}\right. \end{equation} $

$ N = \max\{k, n\} $.考虑Picard迭代函数列

容易证明如下结论(详细过程略).

结论2.1  函数$ \phi_\tau\in C^0(0, 1] $$ \lim\limits_{t\to 0^+}t^{l-\beta}\phi_\tau(t) $存在.

结论2.2  函数列$ \left\{t\to t^{l-\beta}\phi_i(t)\right\} $在区间$ (0, 1] $上一致收敛.

结论2.3  定义在区间$ (0, 1] $上的函数$ \phi(t) = \lim\limits_{\nu\to +\infty}\phi_\nu(t) $是如下积分方程的唯一解

$ \begin{eqnarray} {x}(t)& = &\sum\limits_{j = 1}^l\frac{y_j}{\Gamma(\beta-j+1)}t^{\beta-j}+\sum\limits_{i = 1}^N\frac{x_i}{\Gamma(\alpha+\beta-i+1)}t^{\alpha+\beta-i} {}\\ &&+\int_0^t\frac{(t-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)}g(s){\rm d}s+\frac{\lambda}{\Gamma(\alpha+\beta-\gamma)}\int_{0}^t\left(t-s \right)^{\alpha+\beta-\gamma-1}x(s){\rm d}s. \end{eqnarray} $

引理2.1  设$ x $是初值问题(2.1)–(2.2)的解.则$ x $是积分方程(2.3)的解.

  设$ x $是IVP(2.1)–(2.2)的解.则文献[9, p116,定理2.3]中(2.7.48)式推出

而且容易推出

由定义计算

于是

$ x\in C(0, 1] $是方程(2.3)的解.引理2.1证明完毕.

引理2.2  $ x $是初值问题(2.1)–(2.2)的解的充分必要条件为$ x $满足

$ \begin{eqnarray} x(t)& = &\sum\limits_{j = 1}^ly_jt^{\beta-j}{\bf E}_{\alpha+\beta-\gamma, \beta-j+1}(\lambda t^{\alpha+\beta-\gamma}) +\sum\limits_{i = 1}^{N}x_it^{\alpha+\beta-i}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-i+1}(\lambda t^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda(t- s)^{\alpha+\beta-\gamma})g(s){\rm d}s, \;t\in (0, 1]. \end{eqnarray} $

  设$ x $是问题(2.1)–(2.2)的解.从引理2.1, $ x $是方程(2.3)的解.由结论2.3知道方程(2.3)有唯一解$ x(t) = \lim\limits_{\nu\to \infty}\phi_\nu(t) $.容易计算

因此

我们得到(2.4)式.现设$ x $满足(2.4)式.通过定义直接计算我们证明$ x $是(2.1)–(2.2)的解.首先,利用(2.4)式,我们有

其次,我们类似得到

最后,我们计算得到

因此

对于$ \nu\in {\Bbb N} _1^{k-1} $,通过计算得到

对于$ \nu\in {\Bbb N} _1^{l-1} $,通过计算得到

对于$ \nu\in {\Bbb N} _1^{n-1} $,通过计算得到

直接验证得到

我们得到(2.1)–(2.2)式.引理2.2证明完毕.

2.2 IFDE的分片连续解

$ n, l, k $为正整数, $ \lambda\in {{\Bbb R}} $, $ \alpha\in (n-1, n) $, $ \beta\in (l-1, l), \gamma\in (k-1, k) $$ k\le \alpha+\beta $.我们求如下线性脉冲分数阶Langevin方程(简称ILFDE)的通解

$ \begin{eqnarray} D_{0^+}^\alpha D_{0^+}^\beta x(t)-\lambda D_{0^+}^\gamma x(t) = g(t), \; {\rm a.e., }\ t\in (t_i, t_{i+1}], i\in {\Bbb N} _0^m. \end{eqnarray} $

定理2.3  设$ g $是连续函数.则$ x $是方程(1.5)的解的充分必要条件为存在常数$ c_{\nu, j}\in {{\Bbb R}} (\nu\in {\Bbb N} _0^m, j\in {\Bbb N} _1^l), d_{\nu, i}\in {{\Bbb R}} (\nu\in {\Bbb N} _0^m, i\in {\Bbb N} _1^{\max\{n, k\}}) $使得

$ \begin{eqnarray} x(t)& = &\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^lc_{\nu, j}(t- t_\nu)^{\beta-j}{\bf E}_{\alpha+\beta-\gamma, \beta-j+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{N}d_{\nu, i}(t- t_\nu)^{\alpha+\beta-i}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-i+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda(t- s)^{\alpha+\beta-\gamma})g(s){\rm d}s , \ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m. \end{eqnarray} $

  证明分两步.由于计算过程是初等的,所以部分计算推导略去.

第1步  设$ x $满足(2.6)式.我们证明$ x $是方程(2.5)的分片连续解.

容易从$ g\in C[0, 1] $推出$ x|_{(t_j, t_{j+1}]}\in C(t_j, t_{j+1}] $$ \lim\limits_{t\to t_j^+}(t- t_j)^{l-\beta}x(t) $存在.由(2.6)式,对于$ t\in (t_v, t_{v+1}] $,直接计算得到

类似地,对于$ t\in (t_v, t_{v+1}] $通过计算得到

因此对于$ t\in (t_v, t_{v+1}] $得到

因此

从而$ x $是方程(2.5)的分片连续解.

第2步  设$ x $是方程(2.5)的分片连续解.证明$ x $满足(2.6)式.

对于$ t\in (t_0, t_1] $,从引理2.2知道存在常数$ c_{0, j}, d_{0, i} $使得

于是(2.6)式对于$ k = 0 $成立.我们假设(2.6)式对于$ 0, 1, 2, \cdots, \mu $成立,即

现在只要证明(2.6)式对于$ \mu+1 $成立.由数学归纳法知道(2.6)式对于所有$ v\in {\Bbb N} _0^m $成立.

事实上,假设

$ \begin{eqnarray} x(t)& = &\Phi(t)+\sum\limits_{\nu = 0}^\mu\sum\limits_{j = 1}^lc_{\nu, j}(t- t_\nu)^{\beta-j}{\bf E}_{\alpha+\beta-\gamma, \beta-j+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}){}\\ && +\sum\limits_{\nu = 0}^\mu\sum\limits_{i = 1}^{N}d_{\nu, i}(t- t_\nu)^{\alpha+\beta-i}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-i+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}){}\\ && +\int_0^t(t- s)^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda(t- s)^{\alpha+\beta-\gamma})g(s){\rm d}s, t\in (t_{\mu+1}, t_{\mu+2}]. \end{eqnarray} $

那么对于$ t\in (t_{\mu+1}, t_{\mu+2}] $,通过直接计算得到

类似地对于$ t\in (t_v, t_{v+1}](v\in {\Bbb N} _0^{\mu}) $,直接计算得到

对于$ t\in (t_{\mu+1}, t_{\mu+2}] $,得到

因此对于$ t\in (t_{\mu+1}, t_{\mu+2}] $,得到

应用(2.5)式,我们得到

立得

$ \begin{eqnarray} D_{t_{\nu+1}^+}^\alpha D_{t_{\nu+1}^+}^\beta\Phi(t)-\lambda D_{t_{\nu+1}^+}^\gamma x(t) = 0, t\in (t_{\nu+1}, t_{\nu+2}]. \end{eqnarray} $

通过直接计算我们得到

$I_{t_{\mu + 1}^ + }^{l - \beta }\Phi ({t_{\nu + 1}}), \;D_{t_{\mu + 1}^ + }^{\beta - i}\Phi ({t_{\nu + 1}}), i \in {\Bbb N}_1^{l - 1};\\ \left\{ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{(I_{t_{\mu + 1}^ + }^{n - \alpha }D_{t_{\mu + 1}^ + }^\beta - \lambda I_{t_{\mu + 1}^ + }^{k - \gamma })\Phi ({t_{\nu + 1}}), }\\{(D_{t_{\mu + 1}^ + }^{\alpha - j}D_{t_{\mu + 1}^ + }^\beta - \lambda D_{t_{\mu + 1}^ + }^{\gamma - j})\Phi ({t_{\nu + 1}}), j \in {\Bbb N}_1^{k - 1}, }\end{array}}&{k = n;}\\{\begin{array}{*{20}{l}}{(D_{t_{\mu + 1}^ + }^{\alpha - k}D_{t_{\mu + 1}^ + }^\beta - \lambda I_{t_{\mu + 1}^ + }^{k - \gamma })\Phi ({t_{\nu + 1}}), }\\{(D_{t_{\mu + 1}^ + }^{\alpha - j}D_{t_{\mu + 1}^ + }^\beta - \lambda D_{t_{\mu + 1}^ + }^{\gamma - j})\Phi ({t_{\nu + 1}}), j \in {\Bbb N}_1^{k - 1}, }\\{D_{t_{\mu + 1}^ + }^{\alpha - j}D_{t_{\mu + 1}^ + }^\beta \Phi ({t_{\nu + 1}}), j \in {\Bbb N}_{k + 1}^n, }\end{array}}&{k < n;}\\{\begin{array}{*{20}{l}}{(I_{t_{\mu + 1}^ + }^{n - \alpha }D_{t_{\mu + 1}^ + }^\beta - \lambda D_{t_{\mu + 1}^ + }^{\gamma - n})\Phi ({t_{\nu + 1}}), }\\{(D_{t_{\mu + 1}^ + }^{\alpha - j}D_{t_{\mu + 1}^ + }^\beta - \lambda D_{t_{\mu + 1}^ + }^{\gamma - j})\Phi ({t_{\nu + 1}}), j \in {\Bbb N}_1^{n - 1}, }\\{ - \lambda D_{t_{\mu + 1}^ + }^{\gamma - j}\Phi ({t_{\nu + 1}}), j \in {\Bbb N}_{n + 1}^k, }\end{array}}&{k > n.}\end{array}} \right.$

利用引理2.2相似方法和(2.8)–(2.9)式,知道存在常数$ c_{\mu+1 j}, d_{\mu+1, i}\in {{\Bbb R}} $使得

$ \Phi $代入(2.7)式,我们得到(2.6)式对$ \nu+1 $成立.于是数学归纳法知道(2.6)式对于任意$ k\in {\Bbb N} _0^m $成立.因此$ x $满足(2.6)式.定理2.3证明完毕.

2.3 BVP(1.1)的等价积分方程

设条件(a)–(d)成立.我们利用定理2.3建立BVP(1.1)的等价积分方程.为方便起见,记

分别定义行列式$ M $,其各个元素的代数余子式为$ M_{ij}(i, j = 1, 2, 3) $,函数$ c_{0, j}(I_1, I_2, I_3, I_4, f), $$ d_{0, j}(I_1, I_2, I_3, I_4, f)(j = 1, 2) $如下

定理2.4  设(a)–(d)成立且$ M\not = 0. $则BVP(1.1)等价于以下积分方程

$ \begin{eqnarray} x(t)& = &\sum\limits_{j = 1}^2c_{0, j}(I_1, I_2, I_3, I_4, f)t^{\beta-j}{\bf E}_{\alpha+\beta-\gamma, \beta-j+1}(\lambda t^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{i = 1}^{2}d_{0, i}(I_1, I_2, I_3, I_4, f)t^{\alpha+\beta-i}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-i+1}(\lambda t^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 1}^vI_{2x}(t_\nu)(t- t_\nu)^{\beta-1}{\bf E}_{\alpha+\beta-\gamma, \beta}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 1}^vI_{3x}(t_\nu)(t- t_\nu)^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 1}^vI_{1x}(t_\nu)(t- t_\nu)^{\beta-2}{\bf E}_{\alpha+\beta-\gamma, \beta-1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 1}^vI_{4x}(t_\nu)(t- t_\nu)^{\alpha+\beta-2}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , {\quad} t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m. {}\\ \end{eqnarray} $

  注意到$ n = l = 2 $$ N = \max\{k, n\} = 2 $.$ x $是BVP(1.1)的解.从定理2.3,存在常数$ c_{\nu, j}\in {{\Bbb R}} (\nu\in {\Bbb N} _0^m, j\in {\Bbb N} _1^2), d_{\nu, i}\in {{\Bbb R}} (\nu\in {\Bbb N} _0^m, i\in {\Bbb N} _1^2 $使得

$ \begin{eqnarray} x(t)& = &\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^2c_{\nu, j}(t- t_\nu)^{\beta-j}{\bf E}_{\alpha+\beta-\gamma, \beta-j+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{2}d_{\nu, i}(t- t_\nu)^{\alpha+\beta-i}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-i+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , {\quad} t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m.{}\\ \end{eqnarray} $

通过直接计算得到:当$ t\in (t_i, t_{i+1}] $时有

$ \begin{eqnarray} D_{0^+}^\beta x(t)& = &\lambda\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^2c_{\nu, j}(t- t_\nu)^{\alpha+\beta-\gamma-j}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma-j+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{2}d_{\nu, i}(t- t_\nu)^{\alpha-i}{\bf E}_{\alpha+\beta-\gamma, \alpha-i+1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha-1}{\bf E}_{\alpha+\beta-\gamma, \alpha}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , \ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m, {}\\ \end{eqnarray} $

$ \begin{eqnarray} D_{0^+}^{\beta-1} x(t)& = &\sum\limits_{\nu = 0}^vc_{\nu, 1}{\bf E}_{\alpha+\beta-\gamma, 1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^vc_{\nu, 2}(t- t_\nu)^{\alpha+\beta-\gamma-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{2}d_{\nu, i}(t- t_\nu)^{\alpha-i+1}{\bf E}_{\alpha+\beta-\gamma, \alpha-i+2}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha}{\bf E}_{\alpha+\beta-\gamma, \alpha+1}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , {\quad} t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m, {}\\ \end{eqnarray} $

$ \begin{eqnarray} D_{0^+}^{\alpha-1}D_{0^+}^\beta x(t) & = &\lambda\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^2c_{\nu, j}(t- t_\nu)^{\beta-\gamma-j+1}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma-j+2}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^vd_{\nu, 1}{\bf E}_{\alpha+\beta-\gamma, 1}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\lambda\sum\limits_{\nu = 0}^v d_{\nu, 2}(t- t_\nu)^{\alpha+\beta-\gamma-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t{\bf E}_{\alpha+\beta-\gamma, 1}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , \ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m, {}\\ \end{eqnarray} $

$ \begin{eqnarray} I_{0^+}^{2-\beta}x(t)& = &\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^2c_{\nu, j}(t- t_\nu)^{2-j}{\bf E}_{\alpha+\beta-\gamma, 3-j}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{2}d_{\nu, i}(t- t_\nu)^{\alpha+2-i}{\bf E}_{\alpha+\beta-\gamma, \alpha+3-i}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha+1}{\bf E}_{\alpha+\beta-\gamma, \alpha+2}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , \ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m, {}\\ \end{eqnarray} $

$ \begin{eqnarray} I_{0^+}^{1-\gamma}x(t)& = &\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^2c_{\nu, j}(t- t_\nu)^{\beta-\gamma-j+1}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma-j+2}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{2}d_{\nu, i}(t- t_\nu)^{\alpha+\beta-\gamma-i+1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma-i+2}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s)^{\alpha+\beta-\gamma}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma+1}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , {}\\ &&{\qquad}{\qquad}{\qquad} t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m, \end{eqnarray} $

$ \begin{eqnarray} I_{0^+}^{2-\alpha}D_{0^+}^\beta x(t)& = &\sum\limits_{\nu = 0}^v\sum\limits_{j = 1}^2c_{\nu, j}(t- t_\nu)^{\beta-\gamma-j+2}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma-j+3}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\sum\limits_{\nu = 0}^v\sum\limits_{i = 1}^{2}d_{\nu, i}(t- t_\nu)^{2-i}{\bf E}_{\alpha+\beta-\gamma, 3-i}(\lambda(t- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&+\int_0^t(t- s){\bf E}_{\alpha+\beta-\gamma, 2}(\lambda(t- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s , \ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m.{}\\ \end{eqnarray} $

由(2.14)和(2.16)式得到

$ \begin{eqnarray} D_{0^+}^{\alpha-1}D_{0^+}^\beta x(t)-\lambda I_{0^+}^{1-\gamma}x(t) = \sum\limits_{\nu = 0}^vd_{\nu1}+\int_0^tP(s)f_x(s){\rm d}s , \ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m, \end{eqnarray} $

(iⅰ)由(2.15)式和$ \Delta I_{0^+}^{2-\beta} x(t_i) = I_1(t_i, x(t_i)), i\in {\Bbb N} _1^{m-1} $得到$ c_{\nu 2} = I_{1x}(t_\nu)(\nu\in {\Bbb N} _1^m) $.

(ⅱ)由(2.13)式和$ \Delta D_{0^+}^{\beta-1}x(t_i) = I_2(t_i, x(t_i)), i\in {\Bbb N} _1^{m-1} $得到$ c_{\nu 1} = I_{2x}(t_\nu)(\nu\in {\Bbb N} _1^m) $.

(ⅲ)由(2.18)式和$ \Delta (D_{0^+}^{\alpha-1} D_{0^+}^\beta-\lambda I_{0^+}^{1-\gamma}) x(t_i) = I_3(t_i, x(t_i)), i\in {\Bbb N} _1^{m} $得到$ d_{\nu 1} = I_{3x}(t_\nu) $$ (\nu\in {\Bbb N} _1^m) $.

(ⅳ)由(2.17)式和$ \Delta I_{0^+}^{2-\alpha}D_{0^+}^\beta x(t_i) = I_4(t_i, x(t_i)), i\in {\Bbb N} _1^{m} $得到$ d_{\nu 2} = I_{4x}(t_\nu)(\nu\in {\Bbb N} _1^m) $.

(ⅴ)由(2.15)式, (ⅰ)$ - $(ⅳ)和$ I_{0^+}^{2-\beta} x(0) = -I_{0^+}^{2-\beta}x(1) $得到

$ \begin{eqnarray} &&c_{0, 1}{\bf E}_{\alpha+\beta-\gamma, 2}(\lambda )+c_{0, 2}[1+{\bf E}_{\alpha+\beta-\gamma, 1}(\lambda )] +d_{0, 1}{\bf E}_{\alpha+\beta-\gamma, \alpha+2}(\lambda ) +d_{0, 2}{\bf E}_{\alpha+\beta-\gamma, \alpha+1}(\lambda ) {}\\ & = &-\sum\limits_{\nu = 1}^mI_{2x}(t_\nu) (1- t_\nu){\bf E}_{\alpha+\beta-\gamma, 2}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{1x}(t_\nu){\bf E}_{\alpha+\beta-\gamma, 1}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{3}(t_\nu)(1- t_\nu)^{\alpha+1}{\bf E}_{\alpha+\beta-\gamma, \alpha+2}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{4}(t_\nu)(1- t_\nu)^{\alpha}{\bf E}_{\alpha+\beta-\gamma, \alpha+1}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\int_0^1(1- s)^{\alpha+1}{\bf E}_{\alpha+\beta-\gamma, \alpha+2}(\lambda (1- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s {}\\ & = &M_{1x}(I_1, I_2, I_3, I_4, f), \end{eqnarray} $

(ⅵ)由(2.13)式和$ \Delta D_{0^+}^{\beta-1}x(0) = -\Delta D_{0^+}^{\beta-1}x(1) $得到

$ \begin{eqnarray} &&c_{0, 1}[1+{\bf E}_{\alpha+\beta-\gamma, 1}(\lambda)] +c_{0, 2}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma}(\lambda ) +d_{0, 1}{\bf E}_{\alpha+\beta-\gamma, \alpha+1}(\lambda ) +d_{0, 2}{\bf E}_{\alpha+\beta-\gamma, \alpha}(\lambda ) {}\\ & = &-\sum\limits_{\nu = 1}^mI_{2x}(t_\nu){\bf E}_{\alpha+\beta-\gamma, 1}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{1x}(t_\nu)(1- t_\nu)^{\alpha+\beta-\gamma-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-\gamma}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{3x}(t_\nu)(1- t_\nu)^{\alpha}{\bf E}_{\alpha+\beta-\gamma, \alpha+1}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ && -\sum\limits_{\nu = 1}^mI_{4x}(t_\nu)(1- t_\nu)^{\alpha-1}{\bf E}_{\alpha+\beta-\gamma, \alpha}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\int_0^1(1- s)^{\alpha}{\bf E}_{\alpha+\beta-\gamma, \alpha+1}(\lambda(1- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s {}\\ & = &M_{2x}(I_1, I_2, I_3, I_4, f) , \end{eqnarray} $

(ⅶ)由(2.18)式和$ (D_{0^+}^{\alpha-1} D_{0^+}^\beta-\lambda I_{0^+}^{1-\gamma}) x(0) = -(D_{0^+}^{\alpha-1} D_{0^+}^\beta-\lambda I_{0^+}^{1-\gamma}) x(1) $得到

因此

$ \begin{eqnarray} d_{01} = -\frac{1}{2}\left(\sum\limits_{\nu = 1}^mI_{3x}(t_{\nu1})+\int_0^1P(s)f_x(s){\rm d}s\right) = M_{3x}(I_1, I_2, I_3, I_4, f). \end{eqnarray} $

(ⅷ)由(2.17)式和$ I_{0^+}^{2-\alpha}D_{0^+}^\beta x(0) = -I_{0^+}^{2-\alpha}D_{0^+}^\beta x(1) $得到

$ \begin{eqnarray} &&c_{0, 1}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma+2}(\lambda )+c_{0, 2}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma+1}(\lambda ) +d_{0, 1}{\bf E}_{\alpha+\beta-\gamma, 2}(\lambda ) +d_{0, 2}[1+{\bf E}_{\alpha+\beta-\gamma, 1}(\lambda)] {}\\ & = &-\sum\limits_{\nu = 1}^mI_{2x}(t_\nu)(1- t_\nu)^{\beta-\gamma+1}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma+2}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{1x}(t_\nu)(1- t_\nu)^{\beta-\gamma}{\bf E}_{\alpha+\beta-\gamma, \beta-\gamma+1}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{3x}(t_\nu)(1- t_\nu){\bf E}_{\alpha+\beta-\gamma, 2}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\sum\limits_{\nu = 1}^mI_{4x}(t_\nu)(1- t_\nu){\bf E}_{\alpha+\beta-\gamma, 1}(\lambda(1- t_\nu)^{\alpha+\beta-\gamma}) {}\\ &&-\int_0^1(1- s){\bf E}_{\alpha+\beta-\gamma, 2}(\lambda(1- s)^{\alpha+\beta-\gamma})P(s)f_x(s){\rm d}s {}\\ & = &M_{4x}(I_1, I_2, I_3, I_4, f). \end{eqnarray} $

由(2.19)–(2.22)式得到

$ c_{0, 1}, c_{0, 2}, d_{0, 1}, d_{0, 2} $代入(2.11)式,我们得到(2.10)式.

另一方面,如果$ x $满足(2.10)式,我们可以证明$ x $是BVP(1.1)的分片连续解.定理2.4证明完毕.

3 BVP(1.1)的可解性}}

本节建立BVP(1.1)的分片连续解的存在性定理.设行列式$ M $,其元素的代数余子式分别为$ M_{ij}(i, j = 1, 2, 3) $,函数$ c_{0, j}(I_1, I_2, I_3, I_4, f) $$ d_{0, j}(I_1, I_2, I_3, I_4, f)(j = 1, 2) $在第2.3节定义.定义Banach空间$ PC_{2-\beta}^0(0, 1] $上的算子$ T $如下

我们需要如下假设

(H1)存在单调非减函数$ \phi_f, \phi_{Ii}:[0, \infty)\to [0, \infty) $使得

定理3.1  假设(a)–(d)成立.如果存在$ r_0>0 $使得

$ \begin{eqnarray} &&({\bf E}_{\alpha+\beta-\gamma, \beta}(|\lambda |)Q_{11} +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|)Q_{14} +{\bf E}_{\alpha+\beta-\gamma, \beta-1}(|\lambda |)Q_{12} {}\\ &&+{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(|\lambda|) Q_{13} +m{\bf E}_{\alpha+\beta-\gamma, \beta-1}(|\lambda|))\phi_{I1}(r_0) {}\\ && +({\bf E}_{\alpha+\beta-\gamma, \beta}(|\lambda |)Q_{21} +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|)Q_{24} +{\bf E}_{\alpha+\beta-\gamma, \beta-1}(|\lambda |)Q_{22} {}\\ && +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(|\lambda|)Q_{23} +m{\bf E}_{\alpha+\beta-\gamma, \beta}(|\lambda|))\phi_{I2}(r_0) {}\\ && +({\bf E}_{\alpha+\beta-\gamma, \beta}(|\lambda |)Q_{31} +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|)Q_{34} +{\bf E}_{\alpha+\beta-\gamma, \beta-1}(|\lambda |)Q_{32} {}\\ && +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(|\lambda|)Q_{31} +m{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|))\phi_{I3}(r_0) {}\\ && +(m{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(|\lambda|) +{\bf E}_{\alpha+\beta-\gamma, \beta}(|\lambda |)Q_{41} +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|)Q_{44} {}\\ && +{\bf E}_{\alpha+\beta-\gamma, \beta-1}(|\lambda |)Q_{42} +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(|\lambda|)Q_{43}\phi_{I4}(r_0) {}\\ && +({\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(|\lambda|)Q_{53} +{\bf E}_{\alpha+\beta-\gamma, \beta-1}(|\lambda |)Q_{52} +{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|)Q_{54} {}\\ && +{\bf E}_{\alpha+\beta-\gamma, \beta}(|\lambda |)Q_{51} +||P||{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(|\lambda|))\phi_f(r_0)\le r_0, \end{eqnarray} $

则BVP(1.1)至少有一个分片连续解.

  由$ T $的定义,定理2.4,容易证明$ T:PC_{2-\beta}^0(0, 1]\to PC_{2-\beta}^0(0, 1] $, $ T $是全连续算子, $ x $是BVP(1.1)的分片连续解当且仅当$ x $$ T $$ PC_{2-\beta}^0(0, 1] $上的不动点.取$ \Omega_0 = \{x\in X:||x||\le r_0\} $.$ x\in \Omega_0 $,则$ ||x||\le r_0 $,由(H1)得到

因此

我们得到

因此对$ t\in (t_v, t_{v+1}], v\in {\sf Z}\!\!\!{\sf Z}_0^m $,我们有

于是$ T\Omega_0\subset\Omega_0 $.由Schauder不动点定理立得$ T $$ \Omega_0 $内存在至少一个不动点,这个不动点是BVP(1.1)的分片连续解.定理3.1证明完毕.

推论3.1  假设(a)–(d)成立且存在常数$ M_f, M_{I}\ge 0 $使得

则BVP(1.1)至少由一个分片连续解.

  取$ \phi_f(x) = M_f $, $ \phi_{Ij}(x) = M_{Ij} $.易看出方程(3.1)有正解$ r_0 $.由定理3.1立得结论.证明完毕.

4 例题

本节给出例题说明所获得的结论(引理2.2)应用,并说明针对不同的$ \alpha, \beta, \gamma $,应该采用不同的边界条件.

例4.1  考虑下面方程

$ \begin{eqnarray} [D_{0^+}^{\frac{3}{2}} D_{0^+}^{\frac{5}{4}} - D_{0^+}^{\frac{1}{2}}] x(t) = 0, \;t\in (0, 1]. \end{eqnarray} $

由引理2.2,容易知道方程(4.1)有解

$ \begin{eqnarray} x(t)& = &y_1t^{\beta-1}{\bf E}_{\alpha+\beta-\gamma, \beta}( t^{\alpha+\beta-\gamma})+y_2t^{\beta-2}{\bf E}_{\alpha+\beta-\gamma, \beta-1}( t^{\alpha+\beta-\gamma}) {}\\ &&+x_1t^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda t^{\alpha+\beta-\gamma})+x_2t^{\alpha+\beta-2}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(\lambda t^{\alpha+\beta-\gamma}), \;t\in (0, 1], {}\\ \end{eqnarray} $

其中$ x_1, x_2, y_1, y_2 $为常数.

与方程(2.1)相比,在方程(4.1)中, $ \alpha = \frac{3}{2}, \beta = \frac{5}{4} $, $ \gamma = \frac{1}{2} $其中$ n = l = 2 $, $ k = 1 $, $ \lambda = 1 $, $ P(t)\equiv0 $.由(4.2)式计算得到

$ \beta-\gamma-1 = -\frac{1}{4}<0 $容易看出$ D_{0^+}^{\alpha-1}D_{0^+}^{\beta }x(t) $$ I_{0^+}^{1-\gamma}x(t) $$ t = 0 $均不连续.但是$ (D_{0^+}^{\alpha-1}D_{0^+}^{\beta }-I_{0^+}^{1-\gamma})x(t) $$ t = 0 $连续.所以反周期边界条件$ (D_{0^+}^{\alpha-1}D_{0^+}^{\beta }-I_{0^+}^{1-\gamma})x(0) = -(D_{0^+}^{\alpha-1}D_{0^+}^{\beta }-I_{0^+}^{1-\gamma})x(1) $是合理的.

例4.2  考虑下面方程

$ \begin{eqnarray} [D_{0^+}^{\frac{3}{2}} D_{0^+}^{\frac{5}{4}} - D_{0^+}^{\frac{3}{2}} ] x(t) = 0, \;t\in (0, 1]. \end{eqnarray} $

由引理2.2知道方程(4.3)有解

$ \begin{eqnarray} x(t)& = &y_1t^{\beta-1}{\bf E}_{\alpha+\beta-\gamma, \beta}( t^{\alpha+\beta-\gamma})+y_2t^{\beta-2}{\bf E}_{\alpha+\beta-\gamma, \beta-1}( t^{\alpha+\beta-\gamma}) {}\\ &&+x_1t^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda t^{\alpha+\beta-\gamma})+x_2t^{\alpha+\beta-2}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(\lambda t^{\alpha+\beta-\gamma}), \;t\in (0, 1], {}\\ \end{eqnarray} $

其中$ x_1, x_2, y_1, y_2 $是常数.

与方程(2.1)相比,在(4.3)式中, $ \alpha = \frac{3}{2}, \beta = \frac{5}{4} $, $ \gamma = \frac{3}{2} $其中$ n = l = k = 2 $, $ \lambda = 1 $, $ P(t)\equiv0 $.由(4.4)式,直接计算得到

容易看出$ D_{0^+}^{\alpha-1}D_{0^+}^{\beta }x(t) $, $ D_{0^+}^{\gamma-1}x(t) $, $ I_{0^+}^{2-\alpha} D_{0^+}^\beta x $$ I_{0^+}^{2-\gamma})x $$ t = 0 $不连续.但是$ (D_{0^+}^{\alpha-1}D_{0^+}^{\beta }-I_{0^+}^{\gamma-1})x(t) $$ I_{0^+}^{2-\alpha} D_{0^+}^\beta -I_{0^+}^{2-\gamma})x $$ t = 0 $连续.因此采用如下反周期边界条件

例4.3  考虑如下方程

$ \begin{eqnarray} [D_{0^+}^{\frac{1}{2}} D_{0^+}^{\frac{3}{4}} - D_{0^+}^{\frac{9}{8}} ] x(t) = 0, \;t\in (0, 1]. \end{eqnarray} $

由引理2.2知道(4.5)式有如下解

$ \begin{eqnarray} x(t)& = &y_1t^{\beta-1}{\bf E}_{\alpha+\beta-\gamma, \beta}( t^{\alpha+\beta-\gamma})+y_2t^{\beta-2}{\bf E}_{\alpha+\beta-\gamma, \beta-1}( t^{\alpha+\beta-\gamma}) {}\\ && +x_1t^{\alpha+\beta-1}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta}(\lambda t^{\alpha+\beta-\gamma})+x_2t^{\alpha+\beta-2}{\bf E}_{\alpha+\beta-\gamma, \alpha+\beta-1}(\lambda t^{\alpha+\beta-\gamma}), \;t\in (0, 1], {}\\ \end{eqnarray} $

其中$ x_1, x_2, y_1, y_2 $是常数.

与方程(2.1)相比,在方程(4.5)中, $ \alpha = \frac{1}{2}, \beta = \frac{3}{4} $, $ \gamma = \frac{9}{8} $其中$ n = l = 1 $, $ k = 2 $, $ \lambda = 1 $, $ P(t)\equiv0 $.

容易看出$ I_{0^+}^{1-\alpha}D_{0^+}^{\beta }x(t) $$ D_{0^+}^{\gamma-1}x(t) $$ t = 0 $不连续.但是$ (I_{0^+}^{1-\alpha}D_{0^+}^{\beta }-D_{0^+}^{\gamma-1})x(t) $$ t = 0 $连续.因此对方程(4.5),我们使用下面的边界条件:

注4.4  设$ \alpha, \beta, \gamma\in (1, 2) $满足$ \gamma<\alpha+\beta $.读者可以考虑下面的边值问题:

$ \begin{eqnarray} \left\{ \begin{array}{l} [D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t) = P(t)f\left(t, x(t) \right), \ {\rm a.e., }\ t\in (t_i, t_{i+1}], i\in {\Bbb N} _0^{m}, \\ \Delta I_{0^+}^{2-\beta} x(t_i) = I_1(t_i, x(t_i)), i\in {\Bbb N} _1^{m-1}, \\ \Delta D_{0^+}^{\beta-1}x(t_i) = I_2(t_i, x(t_i)), i\in {\Bbb N} _1^{m-1}, \\ \Delta (I_{0^+}^{2-\alpha} D_{0^+}^\beta -\lambda I_{0^+}^{2-\gamma})x(t_i) = I_3(t_i, x(t_i)), i\in {\Bbb N} _1^{m}, \\ \Delta (D_{0^+}^{\alpha-1}D_{0^+}^\beta x-\lambda D_{0^+}^{\gamma-1})x(t_i) = I_4(t_i, x(t_i)), i\in {\Bbb N} _1^{m}, \\ I_{0^+}^{2-\beta} x(0) = -I_{0^+}^{2-\beta}x(1), \;\Delta D_{0^+}^{\beta-1}x(0) = -\Delta D_{0^+}^{\beta-1}x(1), \\ (I_{0^+}^{2-\alpha} D_{0^+}^\beta -\lambda I_{0^+}^{2-\gamma})x(0) = -(I_{0^+}^{2-\alpha} D_{0^+}^\beta -\lambda I_{0^+}^{2-\gamma})x(1), \\ (D_{0^+}^{\alpha-1}D_{0^+}^\beta x-\lambda D_{0^+}^{\gamma-1})x(0) = -(D_{0^+}^{\alpha-1}D_{0^+}^\beta x-\lambda D_{0^+}^{\gamma-1})x(1). \end{array}\right. \end{eqnarray} $

边值问题(4.7)是梁方程反周期边值问题的推广,其边界条件与BVP(1.1)中边界条件不同.

参考文献

Agarwal R , Hristova S , O'Regan D .

Stability of solutions to impulsive Caputo fractional differential equations

Electron J Diff Equ, 2016, 58, 1- 22

URL     [本文引用: 1]

Ahmad B , Eloe P W .

A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices

Commun Appl Nonl Anal, 2010, 17, 69- 80

URL     [本文引用: 3]

Ahmad B , Nieto J J .

Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions

Intern J Differ Equ, 2010

DOI:10.1155/2010/649486      [本文引用: 1]

Ahmad B , Nieto J J , Alsaedi A .

A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders

Adv Differ Equ, 2012

DOI:10.1186/1687-1847-2012-54      [本文引用: 1]

Ahmad A , Nieto J J , Alsaedi A , El-Shahed M .

A study of nonlinear Langevin equation involving two fractional orders in different intervals

Nonlinear Anal Real World Appl, 2012, 13, 599- 606

URL     [本文引用: 3]

Coffey W T , Kalmykov Y P , Waldron J T . The Langevin Equation. Singapore: World Scientific, 2004

[本文引用: 1]

Gambo Y Y , Jarad F , Baleanu D , Abdeljawad T .

On Caputo modification of the Hadamard fractional derivative

Adv Differ Equ, 2014

DOI:10.1186/1687-1847-2014-10      [本文引用: 2]

Gao Z , Yu X , Wang J .

Nonlocal problems for Langevin-type differential equations with two fractional-order derivatives

Bound Value Prob, 2016

DOI:10.1186/s13661-016-0560-4      [本文引用: 2]

Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science BV, 2006

[本文引用: 3]

Kilbas A A, Marichev O I, Samko S G. Fractional Integral and Derivatives (Theory and Applications). Switzerland: Gordon and Breach, 1993

[本文引用: 1]

Liu Y .

Survey and new results on boundary value problems of singular fractional differential equations with impulse effects

Electron J Diff Equ, 2016, 296, 1- 177

URL     [本文引用: 2]

Liu Y .

New boundary value problems for higher order impulsive fractional differential equations and their solvability

Fractional Differential Calculus, 2017, 7 (1): 1- 121

URL    

Liu Y .

General methods for converting impulsive fractional differential equations to integral equations and applications

Mathematsche Nachrichten, 2018, 291, 443- 491

URL     [本文引用: 1]

Lizana L , Ambjornsson T , Taloni A , et al.

Foundation of fractional Langevin equation:harmonization of a many-body problem

Phys Rev E, 2010

DOI:10.1103/PhysRevE.81.051118      [本文引用: 2]

Mawhin J. Topological Degree Methods in Nonlinear Boundary Value Problems. Providence, RI: American Math Soc, 1979

[本文引用: 1]

Ntouyas S K , Tariboon J .

Fractional integral problems for Hadamard-Caputo fractional Langevin differential inclusions

J Appl Math Comput, 2016, 51 (1/2): 13- 33

URL     [本文引用: 1]

Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999

[本文引用: 4]

Sudsutad W , Ntouyas S K , Tariboon J .

Systems of fractional Langevin equations of Riemann-Liouville and Hadamard types

Adv Differ Equ, 2015, 2015, 235

URL     [本文引用: 1]

Sudsutad W , Tariboon J .

Nonlinear fractional integro-differential Langevin equation involving two fractional orders with three-point multi-term fractional integral boundary conditions

J Appl Math Comput, 2013, 43, 507- 522

URL     [本文引用: 1]

Tariboon J , Ntouyas S K .

Nonlinear second-order impulsive q-difference Langevin equation with boundary conditions

Boundary Value Problems, 2014, 2014, 85

URL    

Thaiprayoon C , Ntouyas S K , Tariboon J .

On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation

Adv Differ Equ, 2015, 2015, 374

URL     [本文引用: 2]

Tariboon J , Ntouyas S K , Thaiprayoon C .

Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions

Adv Math Phys, 2014

DOI:10.1155/2014/372749      [本文引用: 2]

Wang J , Feckan M , Zhou Y .

Presentation of solutions of impulsive fractional Langevin equations and existence results

The European Physical Journal Special Topics, 2013, 222 (8): 1857- 1874

URL     [本文引用: 2]

Wang H , Lin X .

Existence of solutions for impulsive fractional Langevin functional differential equations with variable parameter

Revista de la Real Academia de Ciencias Exactas, Fasicas y Naturales Serie A Matematicas, 2016, 110 (1): 79- 96

URL     [本文引用: 1]

Wang G , Zhang L , Song G .

Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses

Fixed Point Theory and Applications, 2012, 2012, 200

URL     [本文引用: 1]

Yukunthorna W , Ahmad B , Ntouyas S K , Tariboon J .

On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions

Nonlinear Anal Hybrid Systems, 2016, 19, 77- 92

URL     [本文引用: 1]

Yu T , Deng K , Luo M .

Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders

Commun Nonl Sci Numer Simul, 2014, 19 (6): 1661- 1668

URL     [本文引用: 1]

Yukunthorn M , Ntouyas S K , Tariboon J .

Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions

Adv Differ Equ, 2014, 2014, 315

DOI:10.1186/1687-1847-2014-315      [本文引用: 1]

Zhao K .

Impulsive boundary value problems for two classes of fractional differential equation with two different Caputo fractional derivatives

Mediterr J Math, 2016, 13 (3): 1033- 1050

URL     [本文引用: 2]

/