数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 103-131.

• 论文 • 上一篇    下一篇

含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性

刘玉记()   

  1. 广东财经大学统计与数学学院 广州 510320
  • 收稿日期:2019-01-17 出版日期:2020-02-26 发布日期:2020-04-08
  • 作者简介:刘玉记, E-mail:liuyuji888@sohu.com
  • 基金资助:
    广州市科技计划项目(201707010425);广州市科技计划项目(201804010350)

Solvability of BVPs for Impulsive Fractional Langevin Type Equations Involving Three Riemann-Liouville Fractional Derivatives

Yuji Liu()   

  1. Department of Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320
  • Received:2019-01-17 Online:2020-02-26 Published:2020-04-08
  • Supported by:
    广州市科技计划项目(201707010425);广州市科技计划项目(201804010350)

摘要:

nlk为正整数且α∈(n-1,n),β∈(l-1,l),γ∈(k-1,k).该文首先利用迭代方法给出具有三个分数阶导数的Langevin方程

的连续通解.然后,该文使用数学归纳法获得脉冲分数阶Langevin方程

分片连续通解.接下来,该文运用获得的结果研究具有三个分数阶导数αβ∈(1,2),γ∈(0,1)的非线性脉冲Langevin方程的一类边值问题,通过将其化为积分方程,运用不动点定理建立这类边值问题解的存在性定理.最后,该文给出例子说明了主要结果的应用.

关键词: 迭代方法, 多项脉冲分数阶Langevin方程, Riemann-Liouville分数阶导数, 边值问题, 积分方程

Abstract:

Let n,l,k be positive integers and α(n1,n), β(l1,l) and γ(k1,k). Firstly the continuous general solutions of the Langevin equation with three fractional derivatives [D0+αD0+βλD0+γ]x(t)=P(t) are presented by using iterative method. Secondly the piecewise continuous general solutions of the impulsive Langevin equation with three fractional derivatives [D0+αD0+βλD0+γ]x(t)=P(t),t(ti,ti+1],iN0m are given by using mathematical in{\rm d}uction method. Thirdly, by using the obtained results, a boundary value problem for the impulsive Langevin fractional differential equation with three Riemann-Liouville fractional derivatives of order α,β(1,2),γ(0,1) is converted to an integral equation. Existence results for solutions of the mentioned problem are established. Some examples are given to show readers the applications of the main results.

Key words: Iterative method, Impulsive multi-term fractional Langevin equation, Riemann-Liouville fractional derivative, Boundary value problem, Integral equation

中图分类号: 

  • O175