数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 103-131.

• 论文 • 上一篇    下一篇

含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性

刘玉记()   

  1. 广东财经大学统计与数学学院 广州 510320
  • 收稿日期:2019-01-17 出版日期:2020-02-26 发布日期:2020-04-08
  • 作者简介:刘玉记, E-mail:liuyuji888@sohu.com
  • 基金资助:
    广州市科技计划项目(201707010425);广州市科技计划项目(201804010350)

Solvability of BVPs for Impulsive Fractional Langevin Type Equations Involving Three Riemann-Liouville Fractional Derivatives

Yuji Liu()   

  1. Department of Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320
  • Received:2019-01-17 Online:2020-02-26 Published:2020-04-08
  • Supported by:
    广州市科技计划项目(201707010425);广州市科技计划项目(201804010350)

摘要:

nlk为正整数且α∈(n-1,n),β∈(l-1,l),γ∈(k-1,k).该文首先利用迭代方法给出具有三个分数阶导数的Langevin方程

的连续通解.然后,该文使用数学归纳法获得脉冲分数阶Langevin方程

分片连续通解.接下来,该文运用获得的结果研究具有三个分数阶导数αβ∈(1,2),γ∈(0,1)的非线性脉冲Langevin方程的一类边值问题,通过将其化为积分方程,运用不动点定理建立这类边值问题解的存在性定理.最后,该文给出例子说明了主要结果的应用.

关键词: 迭代方法, 多项脉冲分数阶Langevin方程, Riemann-Liouville分数阶导数, 边值问题, 积分方程

Abstract:

Let $n,l,k$ be positive integers and $\alpha\in (n-1,n)$, $\beta\in (l-1,l)$ and $\gamma\in (k-1,k)$. Firstly the continuous general solutions of the Langevin equation with three fractional derivatives $[D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t)=P(t)$ are presented by using iterative method. Secondly the piecewise continuous general solutions of the impulsive Langevin equation with three fractional derivatives $[D_{0^+}^\alpha D_{0^+}^\beta -\lambda D_{0^+}^\gamma ] x(t)=P(t),t\in (t_i,t_{i+1}],i\in {\Bbb N} _0^m$ are given by using mathematical in{\rm d}uction method. Thirdly, by using the obtained results, a boundary value problem for the impulsive Langevin fractional differential equation with three Riemann-Liouville fractional derivatives of order $\alpha,\beta\in (1,2),\gamma\in (0,1)$ is converted to an integral equation. Existence results for solutions of the mentioned problem are established. Some examples are given to show readers the applications of the main results.

Key words: Iterative method, Impulsive multi-term fractional Langevin equation, Riemann-Liouville fractional derivative, Boundary value problem, Integral equation

中图分类号: 

  • O175