Processing math: 11%

数学物理学报, 2019, 39(4): 785-796 doi:

论文

一类具有不连续捕获的Lasota-Wazewska模型周期解存在性及稳定性分析

阳超,1, 李润洁2

Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting

Yang Chao,1, Li Runjie2

通讯作者: 李润洁

收稿日期: 2017-09-15  

基金资助: 国家自然科学基金.  11801042
长沙市科技计划.  K1705081

Received: 2017-09-15  

Fund supported: the NSFC.  11801042
the Changsha Science and Technology Plan.  K1705081

作者简介 About authors

阳超,E-mail:yang0915@hnu.edu.cn , E-mail:yang0915@hnu.edu.cn

摘要

该文研究了一类具有不连续捕获项的非光滑混合时滞Lasota-Wazewska模型.基于非光滑分析、Kakutani's不动点理论和常Lyapunov方法,建立了易于验证的与时滞无关的稳定性准则,同时保证模型的正周期解的存在性和全局指数稳定性,并给出了对应的仿真实例来验证该文中方法的正确性和有效性.

关键词: Lasota-Wazewska模型 ; 混合时滞 ; 不连续捕获 ; 正周期解 ; 指数稳定

Abstract

In this paper, we study a class of mixed time-varying delayed Lasota-Wazewska model with discontinuous harvesting, which is described by a periodic nonsmooth dynamical system. Base on nonsmooth analysis, Kakutani's fixed point method and the generalized Lyapunov method, easily verifiable delay-independent criteria are established to ensure the existence and exponential stability of positive periodic solutions. Finally, we give an example to further illustrate the effectiveness of our main results.

Keywords: Lasota-Wazewska model ; Mixed delayed system ; Discontinuous harvesting ; Positive periodic solution ; Exponential stability

PDF (421KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

阳超, 李润洁. 一类具有不连续捕获的Lasota-Wazewska模型周期解存在性及稳定性分析. 数学物理学报[J], 2019, 39(4): 785-796 doi:

Yang Chao, Li Runjie. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting. Acta Mathematica Scientia[J], 2019, 39(4): 785-796 doi:

1 引言

在过去的几十年中,非线性时滞微分方程得到了广泛的研究.例如,越来越多的学者正在研究捕食-被捕食模型、传染病模型和红血细胞模型等等.而红血细胞模型最初是被Wazewska-Czyzewska和Lasota两位科学家于1976年在文章[1]中所提出来的.最初的模型刻画如下

x(t)=ax(t)+becx(tτ),    t0,
(1.1)

其中x(t)表示在t时刻红血细胞的数量, a>0是红血细胞的死亡率, bc是单位时间内红细胞产量呈正相关常数, τ是生产红血细胞所需时间.

在现实世界中,由于外部因素的影响,红血细胞的生产通常是不连续的,不连续性是典型的现象.当连续性不满足时,系统的周期解是否存在?连续条件下可以得到的模型稳定性结论在不连续的条件下是否依然得到保证?在此基础上,国内外许多学者对不连续模型得到了一些结论.例如,在文章[3]中研究了一类具有离散时滞的不连续捕获Lasota-Wazewska模型,运用了常规Lyapunov函数方法得到了周期解的存在性和全局指数稳定性结果.在文章[32]中,作者调查了一类具有线性捕获的离散Wazewska-Lasota模型.通过构造Lyapunov泛函,证明了该模型的解指数收敛于概周期解.此外,一些生态模型中还出现了具有周期时滞的泛函微分方程,如动物红细胞存活模型[18-19]和渐近概周期函数[17, 20].为了克服这一困难,许多经典连续微分方程理论中的结果已被证明在不连续动力系统中无效[11-16].

然而,现有的研究大多集中在周期解、概周期解、甚至平衡点的存在性和稳定性上,因此需要一些方法来实现时滞动力系统的稳定性.而在现实世界中,分布时滞具有非常重要的生物学意义,是当前研究的热点问题之一.由于模型中分布时滞的存在,相比于其他模型会比较复杂,因此较难处理,这导致在证明全局解的存在性和稳定性时有一定的难度.而同时分布时滞在现实生物模型中又起着不可忽视的作用.例如,在文章[36]中的捕食-被捕食模型和在文章[37]中的随机Lotka-Volterra模型中,这些模型中出现的分布时滞对生态系统的作用相比于离散时滞有着更为深远的影响.而目前对于具有混合分布时滞和不连续捕获的模型,其现有的动力学定性及稳定性结果还很少.

基于上述讨论和分析,本文将考虑如下具有不连续捕获的混合时滞Lasote-Wazewska模型

x(t)=a(t)x(t)+ni=1bi(t)eci(t)x(tτi(t))+ni=1pi(t)0Ki(s)eqi(t)x(ts)dsd(t)H(x(t)),
(1.2)

其中d(t)表示在时刻t时的死亡率; Ki():[0,)[0,),i=1,2,,n表示分布时滞的概率核函数;其他参数的意义与方程(1.1)一致,其中a, bi, ci, pi, qid是连续的ω-周期函数,并且对于i=1,2,,n, a, bi, ci, pi, qi为正数, d为非负数.核函数Ki:[0,)[0,)是连续可积的,当i=1,2,,n时,存在Mi>0满足对0Ki(s)dsMi. H()表示不连续捕获函数,对于不连续捕获函数假设其满足如下条件.

(H1) H0是几乎处处有界的且单调非减, H除了可数个不连续点之外在R上是连续的,此外, H在任意R中的紧致区间上仅有有限个不连续点,并且H(0)=H(0+)=0.

由于方程(1.2)中的右端函数是不连续的,因此有必要给出方程(1.2)解的精确含义,利用Filippov微分包含理论[23-24]给出方程解在不连续条件下的定义.下面通过一些基本定义和引理来为得到本文的主要结论做一些前期准备.

Rn(n1)表示n维欧几里得空间,若XRn,则定义

P0(X)

P_{fc}(X) = \{A\subset X: {\rm (convex) \ nonempty \ and \ closed}\},

P_{kc}(X) = \{A\subset X: {\rm (convex) \ nonempty \ and \ compact}\}.

为了研究在不连续定义下的系统的周期解及稳定性问题,需要给出Filippov解的性质,首先考虑如下泛函微分方程

\begin{equation} \frac{{\rm d}x}{{\rm d}t} = f(t, x_{t}), \end{equation}
(1.3)

其中 f(t, x_{t}) x 处是不连续的.

定义1.1[23-24]  通过集值分析,方程(1.3)在Filippov意义下的解 F: {\Bbb R}^{n}\times{\Bbb C}\rightarrow2^{{\Bbb R}^{n}} 定义如下

F(t, x_{t}) = \bigcap\limits_{\delta>0}\bigcap\limits_{\mu({\cal N}) = 0}\overline{co}[f(t, {\mathfrak B}(x_{t}, \delta)\setminus{\cal N})],

其中 \mu({\cal N}) 表示 {\cal N} 的Lebesgue测度集; {\mathfrak B}(x_{t}, \delta): = \{\hat{x_{t}}\in {\Bbb C}\big| \|\hat{x_{t}}-x_{t}\|_{{\Bbb C}}<\delta \} 表示以 x_{t} 为中心以 \delta 为半径的球. \overline{co}[{\Bbb E}] 表示集合 {\Bbb E} 的凸闭包.如果 x(t) 在任意 {\cal I} 区间的紧子集 [t_{1}, t_{2}] 都是绝对连续的,在非退化区间 {\cal I}\in {\Bbb R} 上的向量值函数 x(t) 称为不连续系统的Filippov解,则 x(t) 需满足如下微分包含

\begin{equation} \frac{{\rm d}x}{{\rm d}t}\in F(t, x_{t}), \ \ {\rm a.e.} \ \ t\in {\cal I}. \end{equation}
(1.4)

根据上述定义,方程(1.3)的稳定性问题在Filippov解的意义下可以转化为微分包含(1.4)式的稳定性问题.接下来,我们利用集值映射和微分包含的上述理论,结合Filippov框架,讨论具有右端不连续的混合时滞模型(1.2)的解.

定义1.2[24, 27]  称 x_{t_{0}} = \varphi:(-\infty, T]\rightarrow{\Bbb R}^{n} , T\in(0, \infty] 是模型(1.2)在 (-\infty, T] 上的一个状态解解,则需满足

(ⅰ) x (-\infty, T] 上连续且在区间 [0, T) 的任意的紧子区间是绝对连续;

(ⅱ)存在可测函数 \gamma:[0, T)\rightarrow{\Bbb R}^{n} 满足 \gamma(t)\in \overline{co}[H(x(t))] 对几乎处处 t\in [0, T)

\begin{eqnarray} x' (t)& = &-a(t)x(t)+\sum\limits_{i = 1}^n b_{i}(t)e^{-c_{i}(t)x(t-\tau_{i}(t))}\\ &&+\sum\limits_{i = 1}^n p_{i}(t)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t)x(t-s)}{\rm d}s-d(t)\gamma(t). \end{eqnarray}
(1.5)

由于模型(1.2)是在生物学背景下定义的,故只有正解才是有意义的.因此,给出以下初始条件

\begin{equation} x_{t_{0}} = \varphi \ \ \mbox{且} \ \ \varphi(0)>0. \end{equation}
(1.6)

x_{t}(t_{0}, \varphi)(x(t;t_{0}, \varphi)) 是模型(1.2)在 x_{t_{0}}(t_{0}, \varphi) = \varphi t_{0}\in {\Bbb R} 定义下的初值.令 [t_{0}, \eta(\varphi)) 是解 x_{t}(t_{0}, \varphi) 的一个最大存在区间.

引理1.1[5]  假设 \Omega 是Banach空间 X 的一个紧有界凸子,若存在一个集值映射 \phi:\Omega\rightarrow P_{kc}(\Omega) 是上半连续的凸紧映射,则 \phi \Omega 中具有一个不动点,即存在 x\in \Omega x\in \phi(t) .

定义1.3[12]  称 V(x):{\Bbb R}^{n}\rightarrow{\Bbb R}^{n} 是C -正则函数,当且仅当满足

(ⅰ) V(x) {\Bbb R}^{n} 是正则的;

(ⅱ) V(x) 是正定的,即对 x\neq0 V(x)>0 V(0) = 0 ;

(ⅲ) V(x) 是径向无界,即当 \|x\|\rightarrow+\infty 时有 V(x)\rightarrow+\infty .

定义1.4[27]  假设 X, Y 为Hausdorff拓扑空间,并且 F: X\rightarrow P_{0}(Y) 是严格的,若对于包含 F(x_{0}) 的任意开集 U ,总存在一个对应 x_{0} 的领域 V ,使 F(V)\subset U ,则称 F 在点 x_{0}\in X 处上半连续(USC).若 F 在每一点 x\in X 都是上半连续的,则称 F 在整个 X 上是上半连续的.

引理1.2[5]  若 V(x):{\Bbb R} ^{n}\rightarrow{\Bbb R} 是C -正则函数,且 x(t):[0, +\infty)\rightarrow{\Bbb R} ^{n} 在任意紧子区间 [0, +\infty) 上绝对收敛.则在 t\in[0, +\infty) 上, x(t) V(x(t)):[0, +\infty)\rightarrow{\Bbb R} 是几乎处处可微的,并有

\begin{eqnarray*} \frac{{\rm d}V(x(t))}{{\rm d}t} = \left\langle\varsigma(t), \frac{{\rm d}x(t)}{{\rm d}t}\right\rangle, \quad \forall\varsigma(t)\in \partial V(x(t)). \end{eqnarray*}

最后,对于有界函数 g: {\Bbb R}\rightarrow{\Bbb R} ,定义 g^{+} g^{-} 为:

g^{+} = \sup\limits_{t\in {\Bbb R}} g(t), \qquad g^{-} = \inf\limits_{t\in {\Bbb R}} g(t).

2 周期解的存在性

本节首先基于多值映射的不动点定理和时滞微分包含理论,来研究模型(1.2)的周期解存在性问题,给出定义

\begin{eqnarray*} \|x\|_{C} = \max|x_{i}|_{\infty}, \ |x_{i}|_{\infty} = \max\limits_{t\in[0, \omega]}|x_{i}(t)|, \ i = 1, 2, \cdots , n. \end{eqnarray*}

并给出如下映射 \phi(x): X\rightarrow2^{X} :

\phi(x) = \int^{t+\omega}_{t} G(t, s){\mathfrak F}(s, x(s)){\rm d}s,

其中

G(t, s) = \frac{e^{\int^{s}_{t}a(u){\rm d}u}}{e^{\int^{t+\omega}_{t}a(u){\rm d}u}-1}, \ G^{+} = \frac{e^{a^{-}}}{e^{a^{-}}-1} , \ G^{-} = \frac{e^{a^{+}}}{e^{a^{+}}-1},

{\mathfrak F}(s, x(s)) = \sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(t)\overline{co}[H(s)].

针对不连续捕获策略函数,再给定以下一个基本假设.

(H2)存在非负且单调非减的函数 W 满足

\sup\limits_{\gamma(t)\in \overline{co}[H(x)]}|\gamma(t)|\leq W(t) ,

其中 W(t) 满足 \int^{\infty}_{0}\frac{1}{1+r+W(r)}{\rm d}r = \infty , \overline{co}[H(x)] = [\min\{H(x^{-}), H(x^{+})\}, \max\{H(x^{-}), H(x^{+})\}] .

注2.1  在现有的文献中, W(t) 通常是一个线性方程,即当 W(t) 有界且满足 a|x|^{\alpha}+b(\alpha\in(0, 1], a, b>0) 时,上述假设 (H2) 就满足了.而在本文的假设中,系统的Filippov状态解的存在区间可以扩张到 [0, \infty) ,并且当假设的控制函数 W(t) 取更一般的情况时,也能得到解的存在性.

命题2.1  称 x(t) 是模型(1.2)Filippov意义下的 \omega 周期解当且仅当在初值条件(1.6)下 x(t) 满足如下积分包含

\begin{eqnarray*} x(t)\in\phi(x), \ \ \ t\in[0, \omega]. \end{eqnarray*}

  假设 x(t) 是系统(1.2)的一个 \omega -周期解,根据(1.5)式可知有

\begin{eqnarray*} &&\frac{{\rm d}x(t)}{{\rm d}t}\in -a(t)x(t)+\sum\limits_{i = 1}^n b_{i}(t)e^{-c_{i}(t)x(t-\tau_{i}(t))}\\ & &+\sum\limits_{i = 1}^n p_{i}(t)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t)x(t-s)}{\rm d}s-d(t)\overline{co}[H(x)] , \end{eqnarray*}

即对 t\in[0, \infty) ,有

\begin{eqnarray} [x(t)e^{\int^{t}_{0}a(s){\rm d}s}]' \in e^{\int^{t}_{0}a(s){\rm d}s}{\mathfrak F}(s, x(s)), \end{eqnarray}
(2.1)

再根据 x(t) 的周期性,对(2.1)式在区间上 [t, t+\omega](0\leq t\leq\omega) 两边同时积分,可得

\begin{eqnarray*} x(t)\in\int^{t+\omega}_{t} G(t, s){\mathfrak F}(s, x(s)){\rm d}s, \ \ \ \ t\in[0, \omega]. \end{eqnarray*}

这就说明了 \omega 周期解 x(t) 满足积分包含 x(t)\in\phi(t) .

另一方面,假设一个 \omega 周期解 x(t) 满足积分包含 x(t)\in\phi(t) .则可知对几乎处处 t\in[0, \infty) ,存在一个可测函数 \gamma: [0, \infty)\rightarrow{\Bbb R}^{n} 使得 \gamma(t)\in \overline{co}[H(x)] ,并有

\begin{eqnarray} x(t) = \int^{t+\omega}_{t} G(t, s){\mathfrak F}(s, \gamma(s)){\rm d}s, \end{eqnarray}
(2.2)

由于(2.2)式的右端是一个绝对连续函数,对(2.2)式两边同时乘以 e^{\int^{t}_{0}a(u){\rm d}u} 并对 t 求导可得

\begin{eqnarray*} \frac{{\rm d}x(t)}{{\rm d}t}e^{\int^{t}_{0}a(u){\rm d}u}+x(t)a(t)e^{\int^{t}_{0}a(u){\rm d}u} = (G(t, t+\omega){\mathfrak F}(t+\omega, \gamma)-G(t, t){\mathfrak F}(t, \gamma))e^{\int^{t}_{0}a(u){\rm d}u}. \end{eqnarray*}

由于 x(t) 是一个周期函数,故当 t\in[0, \infty) 时有

\begin{eqnarray*} \frac{{\rm d}x(t)}{{\rm d}t} = -a(t)x(t)+{\mathfrak F}(t, \gamma). \end{eqnarray*}

根据微分包含理论可知, x(t) 是系统(1.2)的 \omega -周期解.得证.

命题2.2(正持久性)  如果假设条件(H1)–(H2)满足.则系统(1.2)对应初值条件(1.6)的解 x(t;t_{0}, \varphi) 的最大存在区间为 (-\infty, T] , T\in(0, \infty] ,并且在 t\in[t_{0}, T) 上有 x(t;t_{0}, \varphi)>0 .同时, \lim\limits_{t\rightarrow\infty}\sup x(t;t_{0}, \varphi)\leq (\sum\limits_{i = 1}^n (b^{+}_{i}+q_{i}^{+}))/a^{-} .

  为方便起见,分别记 x(t;t_{0}, \varphi) \eta(t_{0}, \varphi) x(t) \eta(\varphi) .首先证明

\begin{equation} x(t)>0 , \ \ \ t\in(t_{0}, \eta({\varphi})). \end{equation}
(2.3)

通过反证法,假设(2.3)式不成立,则必然存在 t^{*}\in(t_{0}, \eta(\varphi)) ,满足当 t\in[t_{0}, t^{*}) x(t)>0 x(t^{*}) = 0 ,则根据假设(H1)–(H2)有

\begin{eqnarray*} 0&\geq& D^{-}x(t^{*}) \\ & = &-a(t^{*})x(t^{*})+\sum\limits_{i = 1}^n b_{i}(t^{*})e^{-c_{i}(t^{*})x(t^{*}-\tau_{i}(t^{*}))} \\ & &+\sum\limits_{i = 1}^n p_{i}(t^{*})\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t^{*})x(t^{*}-s)}{\rm d}s-d(t^{*})\gamma(t^{*}) \\ & = &\sum\limits_{i = 1}^n b_{i}(t^{*})e^{-c_{i}(t^{*})x(t^{*}-\tau_{i}(t^{*}))} +\sum\limits_{i = 1}^n p_{i}(t^{*})\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t^{*})x(t^{*}-s)}{\rm d}s\\ &>&0, \end{eqnarray*}

矛盾.故有(2.3)式成立,所以当 t\in[t_{0}, \eta(\varphi)) 时可得

x' (t)\leq -a^{-}x(t)+\sum\limits_{i = 1}^{n}(b^{+}_{i}+q_{i}^{+}\int^{\infty}_{0}K_{i}(s){\rm d}s),

根据计算当 t\in[t_{0}, \eta(\varphi)) 时可得

\begin{eqnarray} x(t)\leq e^{-a^{-}(t-t_{0})}x(t_{0})+\frac{\sum\limits_{i = 1}^{n}(b^{+}_{i}+q_{i}^{+}\int^{\infty}_{0}K_{i}(s){\rm d}s)}{a^{-}}(1-e^{-a(t-t_{0})}). \end{eqnarray}
(2.4)

故根据(2.3)式和延拓定理可知 \eta(\varphi) = \infty .

根据 \eta(\varphi) = \infty 和(2.4)式可知 \lim\limits_{t\rightarrow\infty}\sup x(t)\leq (\sum\limits_{i = 1}^n (b^{+}_{i}+q_{i}^{+}\int^{\infty}_{0}K_{i}(s){\rm d}s))/a^{-} .得证.

命题2.3  如果假设条件(H1)–(H2)满足.再给出以下假设

(H3)

\sum\limits_{i = 1}^n b_{i}^{-}e^{-c^{+}_{i}R_{1}}+\sum\limits_{i = 1}^n p_{i}^{-}e^{-q^{+}_{i}R_{1}}\int^{\infty}_{0}K_{i}(s){\rm d}s>d^{+}H^{+},

则对任意的 \theta\in (-\infty, 0] C_{0} = \{\varphi|\varphi\in C, R_{2}<\varphi(\theta)<R_{1}\} 是系统(1.2)的一个正不变集,其中 R_{1} = (\sum\limits_{i = 1}^n b_{i}^{+}+\sum\limits_{i = 1}^n p_{i}^{+}\int_{0}^{\infty}K_{i}(s){\rm d}s)/a^{-} ,

\begin{eqnarray*} R_{2} = (\sum\limits_{i = 1}^n b_{i}^{-}e^{-c^{+}_{i}R_{1}}+\sum\limits_{i = 1}^n p_{i}^{-}e^{-q^{+}_{i}R_{1}}\int^{\infty}_{0}K_{i}(s){\rm d}s-d^{+}H^{+})/a^{+}. \end{eqnarray*}

  令 \varphi\in C_{0} .根据上述命题2.2可知,在区间 [t_{0}, \infty) 上, x(t;t_{0}, \varphi) 是系统(1.2)满足 x(t;t_{0}, \varphi)>0(t\geq t_{0}) 的解.为简便起见,记 x(t;t_{0}, \varphi) x(t) .对任意的 t\in[t_{0}, T) ,要证

\begin{eqnarray} 0<x(t)<R_{1}, \end{eqnarray}
(2.5)

假设(2.5)式不成立,即存在 t_{1}\in[t_{0}, T) 对所有的 t\in(-\infty, t_{1}) 满足

\begin{eqnarray*} x(t_{1}) = R_{1}, \ \ \ \ 0<x(t)<R_{1}, \end{eqnarray*}

则由系统(1.2)和(2.1)可得

\begin{eqnarray*} 0&\leq& D_{-}x(t_{1}) \\ & = &-a(t_{1})x(t_{1})+\sum\limits_{i = 1}^n b_{i}(t_{1})e^{-c_{i}(t_{1})x(t_{1}-\tau_{i}(t_{1}))}\\ & &+\sum\limits_{i = 1}^n p_{i}(t_{1})\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t_{1})x(t_{1}-s)}{\rm d}s-d(t_{1})\gamma(t_{1}) \\ &<& -a^{-}x(t_{1})+\sum\limits_{i = 1}^n b_{i}^{+}+\sum\limits_{i = 1}^n p_{i}^{+}\int^{\infty}_{0}K_{i}(s){\rm d}s \\ & = &-a^{-}R_{1}+\sum\limits_{i = 1}^n b_{i}^{+}+\sum\limits_{i = 1}^n p_{i}^{+}\int^{\infty}_{0}K_{i}(s){\rm d}s \\ & = &0. \end{eqnarray*}

这就得到矛盾,则可知(2.5)式成立.

接下来证明对任意的 t\in[t_{0}, T)

\begin{eqnarray} x(t)>R_{2}, \end{eqnarray}
(2.6)

若不然,则存在 t_{2}\in(t_{0}, \infty) 对任意的 t\in(-\infty, t_{2}) 满足

\begin{eqnarray} x(t_{2}) = R_{2}, \ \ \ \ x(t)>R_{2}, \end{eqnarray}
(2.7)

根据(2.1)和(2.7)计算可得

\begin{eqnarray*} 0&\geq& D^{-}x(t_{2}) \\ & = &-a(t_{2})x(t_{2})+\sum\limits_{i = 1}^n b_{i}(t_{2})e^{-c_{i}(t_{2})x(t_{2}-\tau_{i}(t_{2}))}\\ & &+\sum\limits_{i = 1}^n p_{i}(t_{2})\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t_{2})x(t_{2}-s)}{\rm d}s-d(t_{2})H(x(t_{2})) \\ &>&-a^{+}R_{2}+\sum\limits_{i = 1}^n b_{i}^{-}e^{-c^{+}_{i}R_{1}}+\sum\limits_{i = 1}^n p_{i}^{-}e^{-q^{+}_{i}R_{1}}\int^{\infty}_{0}K_{i}(s){\rm d}s-d^{+}H^{+} \\ & = &0. \end{eqnarray*}

则可推出矛盾,故(2.7)式成立.综合(2.5)和(2.7)式,命题得证.

命题2.4  如果假设条件(H1)–(H3)满足,则对每一个 x\in C_{0} ,集值映射 \phi(x) 是凸集.

  对任意 x\in C_{0} ,设 u\in \phi(x) u^{*}\in \phi(x) .则根据微分包含理论,存在可测函数 \gamma:[0, T)\rightarrow{\Bbb R}^{n} 满足 \gamma(t)\in \overline{co}[H(x(t))] |\gamma(t)|<W(t) ,同样存在可测函数 \gamma^{*}:[0, T)\rightarrow{\Bbb R}^{n} 满足 \gamma^{*}(t)\in \overline{co}[H(x(t))] |\gamma^{*}(t)|<W(t) ,则可得下式

u(t) = \int^{t+\omega}_{t} G(t, s){\cal F}(s, x(s)){\rm d}s\in \int^{t+\omega}_{t} G(t, s){\mathfrak F}(s, x(s)){\rm d}s = \phi(x)(t),

u^{*}(t) = \int^{t+\omega}_{t} G(t, s){\cal F}^{*}(s, x(s)){\rm d}s\in \int^{t+\omega}_{t} G(t, s){\mathfrak F}(s, x(s)){\rm d}s = \phi(x)(t),

其中

{\cal F}(s, x(s)) = \sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\gamma(s),

{\cal F}^{*}(s, x(s)) = \sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\gamma^{*}(s).

0\leq\lambda\leq1 ,注意到 \lambda\gamma(t)+(1-\lambda)\gamma^{*}(t)\in \overline{co}[H(x(t))] ,即有

\begin{eqnarray*} &&\lambda{\cal F}(s, x(s))+(1-\lambda){\cal F}^{*}(s, x(s))\nonumber\\ & = &\lambda\Big[\sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\gamma(s)\Big] \nonumber\\ & &+(1-\lambda)\Big[\sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\gamma^{*}(s)\Big] \nonumber\\ &&\in\lambda\Big[\sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\overline{co}[H(x(s))]\Big] \nonumber\\ & &+(1-\lambda)\Big[\sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\overline{co}[H(x(s))]\Big] \nonumber\\ & = &\sum\limits_{i = 1}^n b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}+\sum\limits_{i = 1}^n p_{i}(s)\int^{\infty}_{0}K_{i}(v)e^{-q_{i}(s)x(s-v)}{\rm d}v-d(s)\overline{co}[H(x(s))]\nonumber\\ & = &{\mathfrak F}(s, x(s)), \end{eqnarray*}

因此对所有的 t\in[0, \omega]

\begin{eqnarray*} \lambda u(t)+(1-\lambda )u^{*}(t)& = &\int^{t+\omega}_{t} G(t, s)\big(\lambda{\cal F}(s, x(s))+(1-\lambda){\cal F}^{*}(s, x(s))\big){\rm d}s \nonumber\\ &\in& \int^{t+\omega}_{t} G(t, s){\mathfrak F}(s, x(s)){\rm d}s = \phi(t). \end{eqnarray*}

这就意味着在 C_{0} 上对每一个 x\in C_{0} , \phi(x) 是凸集.得证.

命题2.5  假设条件(H1)–(H3)满足,则集值映射 \phi: C_{0}\rightarrow P_{kc}(C_{0}) 是一个紧映射.

  根据Ascoli-Arzela定理,我们只需证明 \phi(C_{0}) 是一致有界且等度连续的即可.

首先证明 \phi(C_{0}) 是一致有界的.令任意 y\in C_{0} u\in\phi(y) .则存在一个可测函数 \gamma:[0, T)\rightarrow{\Bbb R}^{n} 满足 \gamma(t)\in \overline{co}[H(x(t))] .显然,对任意的 x\in C_{0} ,根据假设条件(H2)和(2.5)式可知对几乎处处 t\in[0, T) \gamma(t)\leq W(t)

\begin{eqnarray*} u(t) = \int^{t+\omega}_{t}G(t, s){\mathfrak F}(s, \gamma){\rm d}s>0, \end{eqnarray*}

因此

\begin{eqnarray*} |u(t)|_{\infty}&\leq & G^{+}\int^{t+\omega}_{t}{\mathfrak F}(s, \gamma){\rm d}s \\ &\leq & G^{+}\omega\Big[\sum\limits^{n}_{i = 1}\big(b^{+}e^{-c^{-}R_{2}}+p^{+}e^{-q^{-}R_{2}}\int^{\infty}_{0}K_{i}(s){\rm d}s\big)+d^{+}(\max\limits_{0\leq s\leq t}\{W(s)\}+\|\psi\|_{\infty})\Big] \end{eqnarray*}

其中 \|\psi\|_{\infty} = \mathop{\rm ess \sup}\limits_{s\in(-\infty, 0]}|\psi(s)| ,即对任意的 x\in C_{0} 可得

\begin{eqnarray*} \|u\|_{C_{0}}\leq G^{+}\omega\Big[\sum\limits^{n}_{i = 1}\big(b^{+}e^{-c^{-}R_{2}}+p^{+}e^{-q^{-}R_{2}}\int^{\infty}_{0}K_{i}(s){\rm d}s\big)+d^{+}(\max\limits_{0\leq s\leq t}\{W(s)\}+\|\psi\|_{\infty})\Big]. \end{eqnarray*}

则可知对任意的 x\in C_{0} 来说, \phi(C_{0}) 是一致有界的.

然后我们只需证明 \phi(C_{0}) 是等度连续的.对任意 u\in \phi(C_{0}) ,假设 t_{1}, t_{2}\in[0, \omega] ,有

\begin{eqnarray*} |u(t_{1})-u(t_{2})|& = &|\int^{t_{1}+\omega}_{t_{1}}G(t_{1}, s){\mathfrak F}(s, \gamma){\rm d}s-\int^{t_{2}+\omega}_{t_{2}}G(t_{2}, s){\mathfrak F}(s, \gamma){\rm d}s|\\ &\leq&|\int^{t_{1}+\omega}_{t_{1}}G(t_{1}, s){\mathfrak F}(s, \gamma){\rm d}s-\int^{t_{1}+\omega}_{t_{1}}G(t_{2}, s){\mathfrak F}(s, \gamma){\rm d}s|\\ &&+|\int^{t_{1}+\omega}_{t_{1}}G(t_{2}, s){\mathfrak F}(s, \gamma){\rm d}s-\int^{t_{2}+\omega}_{t_{2}}G(t_{2}, s){\mathfrak F}(s, \gamma){\rm d}s|\\ &\leq&|\int^{t_{1}+\omega}_{t_{1}}[G(t_{1}, s)-G(t_{2}, s)]{\mathfrak F}(s, \gamma){\rm d}s| \\ &&+|\int^{t_{1}+\omega}_{t_{2}+\omega}G(t_{2}, s){\mathfrak F}(s, \gamma){\rm d}s|+|\int^{t_{1}}_{t_{2}}G(t_{2}, s){\mathfrak F}(s, \gamma){\rm d}s|\\ &\leq&\max\limits_{t\leq s\leq t+\omega}\{|G(t_{1}, s)-G(t_{2}, s)|\}\int^{\omega}_{0}{\mathfrak F}(s, \gamma){\rm d}s\\ &&+G^{+}\int^{t_{1}+\omega}_{t_{2}+\omega}|{\mathfrak F}(s, \gamma)|{\rm d}s+G^{+}\int^{t_{1}}_{t_{2}}|{\mathfrak F}(s, \gamma)|{\rm d}s. \end{eqnarray*}

同时根据假设(H1)和(H2),对任意的 x\in C_{0} ,可得

\begin{eqnarray*} |{\mathfrak F}(s, \gamma)|&\leq&\sum\limits_{i = 1}^n |b_{i}(s)e^{-c_{i}(s)x(s-\tau_{i}(s))}|+\sum\limits_{i = 1}^n |p_{i}(s)\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(s)x(s-v)}{\rm d}v|+|d(t)\gamma(t)| \\ &\leq&\sum\limits_{i = 1}^n |b_{i}^{+}e^{-c_{i}^{-}R_{2}}|+\sum\limits_{i = 1}^n |p_{i}^{+}e^{-q_{i}^{-}R_{2}}\int^{\infty}_{0}K_{i}(s){\rm d}s|+d^{+}\max\limits_{0\leq s\leq t}\{W(s)\}\triangleq \Re. \end{eqnarray*}

这就蕴含着

\begin{eqnarray*} |u(t_{1})-u(t_{2})|\leq\max\limits_{t\leq s\leq t+\omega}\{|G(t_{1}, s)-G(t_{2}, s)|\}\omega\Re+2G^{+}\Re|t_{1}-t_{2}|. \end{eqnarray*}

t_{1}\rightarrow t_{2} 时可知不等式的右端趋于0.因此可得当 t_{1}\rightarrow t_{2} \|u(t_{1})-u(t_{2})\|\rightarrow 0 .这就证明了 \phi(C_{0}) 是等度连续的.命题得证.

命题2.6  假设条件(H1)–(H3)满足,则集值映射 \phi: C_{0}\rightarrow P_{kc}(C_{0}) 是上半连续(USC)映射.

  只需证明 \phi 是闭图像即可.令 {\Bbb F}(t, x(t)) = -a(t)x(t)+{\mathfrak F}(t, x(t)) ,令 |||{\Bbb F}(t, x(t))||| = \sup\{|u|:u\in{\Bbb F}(t, x(t))\} , L^{1}([0, \omega], {\Bbb R}^{n}) 表示一个Banach空间,空间内所有函数 u:[0, \omega]\rightarrow{\Bbb R}^{n} 都是勒贝格可积的.定义算子 {\Bbb F}:C_{0}\rightarrow L^{1}([0, \omega], {\Bbb R}^{n}) 容易得到对每一个固定的 x\in C_{0} 来说, {\Bbb F}(x) 是非空的.

考虑线性连续算子 \hbar:L^{1}([0, \omega], {\Bbb R}^{n})\rightarrow C([0, \omega], {\Bbb R}^{n}) , \hbar u(t) = \int^{t+\omega}_{t}G(t, s)u(s){\rm d}s, t\in[0, \omega]. 因此根据定义1.4可知 \phi = L\circ{\Bbb F} 是一个闭图像算子.这就意味着 \phi 是一个上半连续(USC)算子.得证.

根据第二章的引理1.1,结合本小节的命题2.1–2.6可知,集值映射 \phi: C_{0}\rightarrow P_{kc}(C_{0}) 有至少一个不动点 x^{*}(t)\in C_{0} 满足 x^{*}(t)\in \phi(x^{*})(t) .因此,根据Kakutani's不动点理论,可得到如下的关于系统(1.2)的周期解存在性定理.

定理2.1  假设(H1)–(H3)条件满足,则具有不连续捕获系统(1.2)具有至少一个 \omega -周期解.

3 全局指数稳定性

本节在 \omega -周期解存在性基础上研究模型(1.2)周期解的全局指数稳定性.

定理3.1  如果假设条件(H1)–(H3)成立.再给出以下假设

(H4)

R_{0} = -a^{-}+\sum\limits_{i = 1}^n b_{i}^{+}c_{i}^{+}+\sum\limits_{i = 1}^n p_{i}^{+}q_{i}^{+}\int^{\infty}_{0}K_{i}(s){\rm d}s<0,

则对满足初值条件 \varphi, \varphi^{*}\in C_{0} 的解,当 t\geq t_{0} 时,存在一个正常数 \varepsilon>0 使得

\begin{eqnarray*} |x(t;t_{0}, \varphi)-x(t;t_{0}, \varphi^{*})|<(R_{1}-R_{2})e^{-\varepsilon(t-t_{0})}. \end{eqnarray*}

也就是说系统(1.2)的解是全局指数稳定的.

  令 \varphi, \varphi^{*}\in C_{0} ,为方便起见,分别把 x(t;t_{0}, \varphi) x(t;t_{0}, \varphi^{*}) 记作 x(t) x^{*}(t) ,根据上一小节的命题2.3可知对任意的 t\in[t_{0}, T)

\begin{eqnarray*} R_{2}<x(t), x^{*}(t)<R_{1}. \end{eqnarray*}

根据假设条件(H4)可知必存在一个足够小的 \varepsilon>0 使得

\begin{eqnarray*} -(a^{-}-\varepsilon)+\sum\limits_{i = 1}^n b_{i}^{+}c_{i}^{+}e^{\varepsilon \tau}+\sum\limits_{i = 1}^n p_{i}^{+}q_{i}^{+}\int^{\infty}_{0}K_{i}(s)e^{\varepsilon s}{\rm d}s<0. \end{eqnarray*}

t\geq t_{0} ,再考虑下述Lyapunov函数

\begin{eqnarray*} V(t) = |x(t)-x^{*}(t)|e^{\varepsilon t}. \end{eqnarray*}

显然, V(t) 是绝对连续的,根据求导的链式法则,对任意的 t\geq t_{0} 可得

\begin{eqnarray*} V(t) = |x(t)-x^{*}(t)|e^{\varepsilon t}<(R_{1}-R_{2})e^{\varepsilon t_{0}}, \end{eqnarray*}

用反正法证明上式成立,如不然,假设存在 t_{3}>t_{0} ,对任意的 t\in[t_{0}, t_{3}) 满足

\begin{eqnarray*} V(t_{3}) = (R_{1}-R_{2})e^{\varepsilon t_{0}}, \ \ \ \ V(t)<(R_{1}-R_{2})e^{\varepsilon t_{0}}. \end{eqnarray*}

则计算可得

\begin{eqnarray*} 0&\leq &D_{-}V(t_{3}) \\ & = &\varepsilon e^{\varepsilon t_{3}}|x(t_{3})-x^{*}(t_{3})| +e^{\varepsilon t_{3}}{\rm sgn}\{x(t_{3})-x^{*}(t_{3})\}\times\Big[-a(t_{3})(x(t_{3})-x^{*}(t_{3})) \\ & &+\sum\limits_{i = 1}^n p_{i}(t_{3})\Big(\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t_{3})x(t_{3}-s)}{\rm d}s-\int^{\infty}_{0}K_{i}(s)e^{-q_{i}(t_{3})x^{*}(t_{3}-s)}{\rm d}s\Big) \\ &&+\sum\limits_{i = 1}^n b_{i}(t_{3})\big(e^{-c_{i}(t_{3})x(t_{3}-\tau_{i}(t_{3}))}-e^{-c_{i}(t_{3})x^{*}(t_{3}-\tau_{i}(t_{3}))}\big) -d(t_{3})(\gamma(t_{3})-\gamma^{*}(t_{3}))\Big] \\ &\leq &-(a^{-}-\varepsilon)|x(t_{3})-x^{*}(t_{3})|e^{\varepsilon t_{3}} \\ & &+\sum\limits_{i = 1}^n p_{i}^{+}e^{\varepsilon t_{3}}\int^{\infty}_{0}K_{i}(s)|e^{-q_{i}(t_{3})x(t_{3}-s)}-e^{-q_{i}(t_{3})x^{*}(t_{3}-s)}|{\rm d}s \\ &&+\sum\limits_{i = 1}^n b_{i}^{+}e^{\varepsilon t_{3}}\big(e^{-c_{i}(t_{3})x(t_{3}-\tau_{i}(t_{3}))}-e^{-c_{i}(t_{3})x^{*}(t_{3}-\tau_{i}(t_{3}))}\big) -d^{-}e^{\varepsilon t_{3}}|\gamma(t_{3})-\gamma^{*}(t_{3})| \\ &\leq &-(a^{-}-\varepsilon)|x(t_{3})-x^{*}(t_{3})|e^{\varepsilon t_{3}}\\ & &+\sum\limits_{i = 1}^n b_{i}^{+}c_{i}^{+}|x(t_{3}-\tau_{i}(t_{3}))-x^{*}(t_{3}-\tau_{i}(t_{3}))|e^{\varepsilon(t_{3}-\tau_{i}(t_{3}))}e^{\tau_{i}(t_{3})} \\ &&+\sum\limits_{i = 1}^n p_{i}^{+}q_{i}^{+}\int^{\infty}_{0}K_{i}(s)|x(t_{3}-s)-x^{*}(t_{3}-s)|e^{\varepsilon(t_{3}-s)}e^{\varepsilon s}{\rm d}s \\ &\leq &-(a^{-}-\varepsilon)(R_{1}-R_{2})e^{\varepsilon t_{0}}+\sum\limits_{i = 1}^n b_{i}^{+}c_{i}^{+}fe^{\varepsilon \tau}(R_{1}-R_{2})e^{\varepsilon t_{0}}\\ & &+\sum\limits_{i = 1}^n p_{i}^{+}q_{i}^{+}\int^{\infty}_{0}K_{i}(s)e^{\varepsilon s}{\rm d}s(R_{1}-R_{2})e^{\varepsilon t_{0}} \\ & = & \big(-(a^{-}-\varepsilon)+\sum\limits_{i = 1}^n b_{i}^{+}c_{i}^{+}e^{\varepsilon \tau}+\sum\limits_{i = 1}^n p_{i}^{+}q_{i}^{+}\int^{\infty}_{0}K_{i}(s)e^{\varepsilon s}{\rm d}s\big)(R_{1}-R_{2})e^{\varepsilon t_{0}} \\ &<&0, \end{eqnarray*}

其中 t>t_{0} ,这与 \varepsilon 的选择产生矛盾.故定理得证.

参考文献

Wazewska-Czyzewska , Maria , Lasota , et al.

Mathematical problems of the dynamics of a system of red blood cells

Mat Stos, 1976, 6 (3): 23- 40

URL     [本文引用: 1]

Long Z .

Global asymptotic stability of pseudo almost periodic solutions to a Lasota-Wazewska model with distributed delays

Electronic Journal of Qualitative Theory of Differential Equations, 2015, 2015 (51): 1- 3

Duan L , Huang L , Chen Y .

Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting

Proceedings of the American Mathematical Society, 2016, 144 (2): 561- 573

URL     [本文引用: 1]

Fink A . Almost Periodic Differential Equations. Berlin: Springer, 1974

Clark C .

The optimal management of renewable resources

Natural Resource Modelling, 1990, 43 (1): 31- 52

URL     [本文引用: 2]

Martin A , Ruan S .

Predator-prey models with delay and prey harvesting

Journal of Mathematical Biology, 2001, 43 (3): 247- 267

DOI:10.1007/s002850100095     

Xiao D , Jennings L .

Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting

SIAM Journal on Applied Mathematics, 2005, 65 (3): 737- 753

DOI:10.1137/S0036139903428719     

Pei Y , Lv Y , Li C .

Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system

Applied Mathematical Modelling, 2012, 36 (4): 1752- 1765

DOI:10.1016/j.apm.2011.09.015     

Costa M , Meza M .

Dynamical stabilization of grazing systems:An interplay among plant-water interaction, overgrazing and a threshold management policy

Mathematical Biosciences, 2006, 204 (2): 250- 259

DOI:10.1016/j.mbs.2006.05.010     

Bischi G , Lamantia F , Tramontana F .

Sliding and oscillations in fisheries with on-off harvesting and different switching times

Communications in Nonlinear Science and Numerical Simulation, 2014, 19 (1): 216- 229

DOI:10.1016/j.cnsns.2013.05.023     

Huang L , Wu J .

The role of threshold in preventing delay-induced oscillations of frustrated neural networks with McCulloch-Pitts nonlinearity

International Journal of Mathematics, Game Theory and Algebra, 2001, 11 (6): 71- 100

URL     [本文引用: 1]

Filippov A .

Differential equations with discontinuous right-hand sides and differential inclusions

Nonlinear Analysis and Nonlinear Differential Equations, 1988, 154 (2): 265- 288

[本文引用: 1]

Adhikari S , Yang C , Kim H , et al.

Memristor bridge synapse-based neural network and its learning

IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (9): 1426- 1435

DOI:10.1109/TNNLS.2012.2204770     

Chua L .

Memristor-the missing circuit element

IEEE Transactions on Circuit Theory, 1971, 18 (5): 507- 519

DOI:10.1109/TCT.1971.1083337     

Sprott J .

A new class of chaotic circuit

Physics Letters A, 2000, 266 (1): 19- 23

URL    

Chen G , Ueta T .

Yet another chaotic attractor

International Journal of Bifurcation and Chaos, 1999, 9 (7): 1465- 1466

DOI:10.1142/S0218127499001024      [本文引用: 1]

Liang Z .

Asymptotically periodic solutions of a class of second order nonlinear differential equations

Proceedings of the American Mathematical Society, 1987, 99 (4): 693- 699

DOI:10.1090/S0002-9939-1987-0877042-9      [本文引用: 1]

Li J , Wang Z .

Existence and global attractivity of positive periodic solutions of a survival model of red blood cells

Computers and Mathematics with Applications, 2005, 50 (1/2): 41- 47

URL     [本文引用: 1]

Xu W , Li J .

Global attractivity of the model for the survival of red blood cells with several delays

Annals of Differential Equations, 1998, 14 (2): 259- 265

URL     [本文引用: 1]

Wang J , Fec M , Zhou Y .

Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations

Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (2): 246- 256

DOI:10.1016/j.cnsns.2012.07.004      [本文引用: 1]

Zhang C . Almost Periodic Type Functions and Ergodicity. Berlin: Springer, 2009

Zhang C .

Pseudo almost periodic solutions of some differential equations

Journal of Mathematical Analysis and Applications, 1994, 181 (1): 62- 76

URL    

Filippov A . Differential Equations with Discontinuous Righthand Sides:Control Systems. New York: Springer Science and Business Media, 1988

[本文引用: 2]

黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用. 北京: 科学出版社, 2011

[本文引用: 3]

Huang L , Guo Z , Wang J . Theory and Application of Right end Discontinuous Differential Equations. Beijing: Science Press, 2011

[本文引用: 3]

张海, 郑祖庥, 蒋威.

非线性分数阶泛函微分方程解的存在性

数学物理学报, 2011, 31A (2): 289- 297

URL    

Zhang H , Zheng Z , Jiang W .

Existence of solutions for nonlinear fractional functional differential equations

Acta Mathematica Scientia, 2011, 31A (2): 289- 297

URL    

鲁红英, 王克.

具周期系数的单种群模型及其最优捕获策略

数学物理学报, 2005, 25A (6): 176- 182

URL    

Lu H , Wang K .

Single population model with periodic coefficients and its optimal harvesting strategy

Acta Mathematica Scientia, 2005, 25A (6): 176- 182

URL    

Aubin J , Cellina A . Differential Inclusions. Berlin: Springer-Verlag, 1984: 8- 13

[本文引用: 2]

Forti M , Nistri P .

Global convergence of neural networks with discontinuous neuron activations

IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications, 2003, 50 (11): 1421- 1435

DOI:10.1109/TCSI.2003.818614     

Forti M , Grazzini M , Nistri P , et al.

Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations

Physica D:Nonlinear Phenomena, 2006, 214 (1): 88- 99

DOI:10.1016/j.physd.2005.12.006     

Yan J .

Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model

Journal of Mathematical Analysis and Applications, 2003, 279 (1): 111- 120

DOI:10.1016/S0022-247X(02)00613-3     

Wang D , Huang L .

Periodicity and multi-periodicity of generalized Cohen-Grossberg neural networks via functional differential inclusions

Nonlinear Dynamics, 2016, 1- 20

URL    

Hamaya Y .

Almost periodic dynamic of a discrete Wazewska-Lasota model

Communications in Mathematics and Applications, 2013, 4 (3): 189- 199

[本文引用: 1]

Liu G , Yan W , Yan J .

Periodic solutions for a class of neutral functional differential equations with infinite delay

Nonlinear Analysis:Theory, Methods and Applications, 2009, 71 (1): 604- 613

Saker S .

Oscillation and global attractivity in hematopoiesis model with periodic coefficients

Applied Mathematics and Computation, 2003, 142 (2): 477- 494

DOI:10.1016/S0096-3003(02)00315-6     

Liu X , Meng J .

The positive almost periodic solution for Nicholson-type delay systems with linear harvesting terms

Applied Mathematical Modelling, 2012, 36 (7): 3289- 3298

DOI:10.1016/j.apm.2011.09.087     

Fan M , Wang K .

Global existence of positive periodic solutions of periodic predator-prey system with infinite delays

Journal of Mathematical Analysis and Applications, 2001, 262 (1): 1- 11

URL     [本文引用: 1]

Liu M , Wang K .

Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays

Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (8): 3115- 3123

DOI:10.1016/j.cnsns.2011.09.021      [本文引用: 1]

/